AMENDMENT NO. 2
To
PINE CREEK DRAINAGE BASIN
PLANNING STUDY
And
MASTER DEVELOPMENT DRAINAGE PLAN
For
PINE CREEK SUBDIVISION
(Portion Contributing to Pine Creek)
AMENDMENT NO. 2
To
PINE CREEK DRAINAGE BASIN
PLANNING STUDY
And
MASTER DEVELOPMENT DRAINAGE PLAN
For
PINE CREEK SUBDIVISION
(portion contributing to Pine Creek)

October 1998

Prepared For:

LP47, LLC dba
LA PLATA INVESTMENTS
7150 Campus Drive, Suite 365
Colorado Springs, CO 80920
(719) 260-7477

Prepared By:

JR ENGINEERING, LTD.
4935 North 30th Street
Colorado Springs, CO 80919
(719) 593-2593

Job No. 8716.11
AMENDMENT NO. 2 TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY AND
MASTER DEVELOPMENT DRAINAGE PLAN FOR
PINE CREEK SUBDIVISION
(PORTION CONTRIBUTING TO PINE CREEK)

DRAINAGE REPORT STATEMENT

ENGINEER'S STATEMENT:
The attached amendment to the approved drainage basin planning study was prepared under my
direction and supervision and is correct to the best of my knowledge and belief. Said drainage
report has been prepared according to the criteria established by the City for drainage reports. I
accept responsibility for any damage caused by any negligent acts, errors, or omissions on my
part in preparing this report.

Vancel S. Fossinger, Colorado
For and On Behalf of JR Engineering, Ltd.

DEVELOPER'S STATEMENT:
I, the developer, have read and will comply with all of the requirements specified in this
amendment to the approved Pine Creek Drainage Basin Planning Study.

Business Name:
LP47, LLC
dba La Plata Investments

By:
Bob Ingels

Title:

Address:
7150 Campus Drive, Suite 365
Colorado Springs, CO 80920

CITY OF COLORADO SPRINGS ONLY:
Filed in accordance with Section 15-3-906 of the Code of the City of Colorado Springs, 1980, as
amended.

City Engineer
Conditions

Date
EXECUTIVE SUMMARY

The "Pine Creek Drainage Basin Planning Study," by Obering, Wurth and Associates, approved June 20, 1989, implemented a stormwater management concept that included use of both private and public detention facilities to limit the fully developed condition peak 100-year flow rate in Pine Creek at Highway 83 to a maximum of 2536 cfs. The study identified the historic peak 100-year flow rate for this location as 1210 cfs and required the Developer of the Briargate area to make improvements to the reach of channel downstream of Highway 83 before the historic rate was exceeded. The study provided a phased approach for the construction of the required drainage improvements. In the initial phase, construction of Regional Detention Facility No. 1 was to occur and the Detention Facility was to be fitted with a restricted outlet to allow an estimated 1000 to 1500 acres of the watershed to develop before the historic flow rate was exceeded and downstream improvements were required. The study also recommended that a re-analysis of the basin be done when approximately 1000 acres of the basin had occurred.

Approximately 600 acres of the basin have been developed to date. Regional Detention Facility No. 1 has been constructed with the proposed restricted outlet. Several on-site detention facilities have also been constructed on commercial and office sites. It is estimated that development within the basin is approaching a level where the historic discharge from the watershed above Highway 83 will be exceeded and either the improvements required for the downstream channel must be constructed or additional detention facilities must be constructed within the basin above Highway 83 to limit the peak 100-year discharge to the historic 100-year peak rate. Heightened environmental concerns about construction of extensive improvements within historic watercourses as well as changes in drainage criteria and drainage management philosophy by government agencies and the current major land owner in the basin have driven a re-analysis and formulation of a revised Stormwater Management Plan for the portion of the basin located upstream of Highway 83.
The Stormwater Management Plan contained within this Amendment 2 to the Pine Creek Drainage Basin Planning Study requires additional regional detention facilities be constructed within the basin in order to limit the fully developed condition 100-year peak flow rate at Highway 83 to the previously defined historic 100-year peak flow rate of 1210 cfs. This is consistent with the goals of the effective DBPS as set forth in the section titled “Implementation.” In addition, the plan contained within this Amendment eliminates the requirements of on-site detention within the basin except where downstream conveyance capacity is inadequate. This will be made possible by accomplishing more detention within the proposed regional detention facilities. This is consistent with current City policy.

As reported in the “Pine Creek Drainage Basin Planning Study,” the Pine Creek Drainage Basin has been approved by jurisdictional agencies as a “No-Fee” basin as it relates to respective City ordinances and County resolutions. This Amendment is intended to serve as the stormwater management guideline for the portion of Pine Creek Drainage Basin located upstream of Highway 83.
AMENDMENT NO. 2 TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY AND
MASTER DEVELOPMENT DRAINAGE PLAN FOR
PINE CREEK SUBDIVISION
(PORTION CONTRIBUTING TO PINE CREEK)

TABLE OF CONTENTS

1. **INTRODUCTION**
 A. Contract Authorization
 B. Purpose and Scope
 C. Past Studies
 D. Agency Jurisdictions
 E. Drainage Criteria

2. **PROJECT DESCRIPTION, LOCATION AND DRAINAGE**
 A. Basin Location and Size
 B. Major Drainageways and Facilities
 C. Existing and Proposed Land Use
 D. Existing and Proposed Utilities
 E. Soils/Erosion Potential

3. **FIELD INVESTIGATIONS**
 A. Topographic Mapping
 B. Subsurface Investigation
 C. Environmental Considerations

4. **HYDROLOGIC AND HYDRAULIC DESIGN EVALUATION**
 A. Basin Hydrology
 1. Analysis Purpose
 2. Methodology
 a. Times of Concentration
 b. Curve Numbers
 c. Design Storm
 d. Analysis Approach for Areas of Existing Development
 B. Major Drainageway Hydraulics
 1. Floodplain Delineation Maps
 2. Flood Profiles

5. **PROPOSED DRAINAGE PLAN**
 A. General Description
 B. Fully Developed Condition Plan
 1. Pine Creek North Fork (Sub-basins PN1 through PN14)
 2. Pine Creek South Fork (Basins PS1 through PS13)
 3. Pine Creek Main Channel (Basins PM1 through PM4)
4. Chapel Hills Drive South (Sub-basins CS1 through CS4) Page 19
5. Chapel Hills Drive North (Sub-basins CN1 through CN3) Page 19
6. Pine Creek Main Channel (Basins PM5 through PM7) Page 20
7. Focus on the Family Storm Drain System (Sub-basins F1 through F7) Page 21
8. Pine Creek Main Channel (Basins PM9, PM10, and PM11) Page 23
C. Interim Condition Drainage Plan Page 24
1. Pine Creek North Fork (Sub-basins) IPN1 through IPN5 and PN9) Page 24
2. Pine Creek North Fork (Sub-basins PN11 through PN13 and all Downstream) Page 25
3. Pine Creek South Fork (Sub-basins IPS1 through IPS5) Page 25
4. Pine Creek South Fork (Sub-basins IPS6 through IPS10) Page 26
5. Pine Creek South Fork (Sub-basins PS11 and PS12 and Downstream) Page 27
D. Major Proposed Facilities Page 27
1. Storm Drains Page 27
2. Regional Detention Facilities Page 28
 a. General Design Criteria Page 28
 b. Plan Assumptions for Individual Regional Detention Facilities Page 29
 c. Regional Detention Facility Maintenance Page 29
3. Pine Creek Channel Page 36
 a. General Page 36
4. Proposed Drainage Discharge Constraints Page 38
5. Recommendations for Implementation Page 40
6. Requirements of Governmental Agencies
 Outside of the City of Colorado Springs Page 41

REFERENCES

APPENDIX

Vicinity Map
Hydrologic Model Input Calculations
Hydrologic Model (HEC-1) Output
Fully Developed Condition
Interim Condition
Maps (Folded in Pockets)
- Fully Developed Condition Basin Map and Master Plan
- Interim Condition Basin Map and Master Plan
- F.E.M.A. 100-Year Flood Facility Map
- Subdivision and Land Use Identification Map
- Existing Drainage Facilities Map

Page 43
AMENDMENT NO. 2 TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY AND
MASTER DEVELOPMENT DRAINAGE PLAN FOR
PINE CREEK SUBDIVISION
(PORTION CONTRIBUTING TO PINE CREEK)

I. INTRODUCTION

A. Contract Authorization
 This document and associated analysis was prepared with private funds for LP47, LLC
d.b.a. La Plata Investments by JR Engineering, Ltd. La Plata Investments is the major
landowner and developer within the study area.

B. Purpose and Scope
 This document is to serve as an update and second amendment to the Pine Creek
Drainage Basin Planning Study (DBPS) prepared by Obering, Wurth and Associates as
approved June 20, 1989, by the City of Colorado Springs. This document will also serve
as the Master Development Drainage Plan for the portion of the Pine Creek Subdivision
located within the Pine Creek drainage basin.

1. In regards to providing an update and amendment to the Pine Creek DBPS this
document will provide:
 a. An updated hydrological analysis of the portion of the Pine Creek Basin located
east of State Highway 83 (the study area)
 b. Identification of the drainage facilities that have been constructed within the
portion of the basin located east of Highway 83
 c. Identification of the current proposed land uses within the portion of the Pine
Creek Basin located east of Highway 83
 d. Revised proposed drainage treatment within the portion of the Pine Creek
drainage basin located east of Highway 83. The treatment revisions consist
primarily of:
• Eliminating the requirement for on-site detention except in areas where existing outfall lines do not have sufficient capacity to convey free discharge.

• Increasing the overall detention storage volume to be provided in the proposed regional detention ponds, thus reducing the design storm flow in several locations of Pine Creek including the point that it flows under Highway 83 and onto the grounds of the Air Force Academy.

• Replacing proposed lined open channel conveyances with underground storm drains in several locations.

• Relocation and reconfiguration of previously proposed regional detention facilities and adding additional regional detention facilities.

2. These revisions are proposed as a result of changes in land use planning in the basin, changes in drainage criteria by the governing agencies, and changes in overall drainage treatment philosophies by the governing agencies and by the major land owner in the basin.

3. In regards to the Pine Creek Subdivision this document will estimate the peak flow rates of storm water runoff and identify the overall concept for treatment of the runoff within the portion of the subdivision that will contribute runoff to Pine Creek when it is developed. The identified treatment will consist of:

 a. Indicating the general proposed direction of flow for developed condition drainage.

 b. The major components of proposed storm drain systems including outfall points, proposed detention basin locations and sizes.

 c. General guidelines for the proposed treatment of the portion of Pine Creek Channel that is contained within the subdivision.

More specific and detailed analysis and drainage treatment plans will be provided with the submittal of individual drainage reports for each subdivision filing within the Pine Creek Subdivision.
C. Past Studies

A number of previous studies and reports were reviewed during the preparation of the current study. The most relevant studies are listed below along with a brief synopsis. Additional, reports that were reviewed are noted in the reference section of this study.

"Pine Creek Drainage Basin Planning Study," June 1988 revised October 1988, by Obering, Wurth and Associates. This study included all of the Pine Creek drainage basin above Academy Boulevard. Key items of this study included the following:

- Major drainage conveyances were primarily to be open channels.
- Required onsite detention to achieve a 35 percent reduction in the peak flow rate resulting from development (the difference between the historic and developed peak rates) on all office, research and development, commercial, and school properties.
- Free discharge from all other properties was proposed.
- The 100-year historic peak flow rate in Pine creek as it crosses under Highway 83 was estimated at 1210 cfs.
- Improvements were to be made to the portion of Pine Creek between Highway 83 and Academy Boulevard to allow it to convey a proposed 100-year peak flow rate from above Highway 83 of 2536 cfs. These improvements were to be made to the channel before the historic flow rate from the area above Highway 83 was exceeded.
- Five regional detention ponds were to be constructed above Highway 83 to regulate the peak 100-year discharge rate to 2536 cfs.
- Detention Facility No. 1 was to be constructed on the Pine Creek Main Channel near the intersection of Briargate Parkway and Highway 83 and fitted with a restricter plate to temporarily reduce the planned outflow. The purpose of the reduced outflow was to regulate the down stream 100-year flow in Pine Creek to less than the historic 100-year peak rate. This was to be done to allow development to begin in the watershed before the portion of channel between Academy Boulevard and Highway 83 was improved.

- This amendment proposed the addition of a sixth regional detention pond. The proposed 100-year peak flow rate from the area above Highway 83 was to remain at 2536 cfs.

D. Agency Jurisdictions

The drainage improvements proposed in the current study as well as the majority of the included watershed are located within the Colorado Springs City limits. The extreme upper portions of the watershed included in this study are unincorporated areas of El Paso County. Runoff from the unincorporated areas of the watershed has been accounted for in the current study.

The portion of Pine Creek that is located immediately downstream of the area included in this proposed Amendment No. 2 to the Pine Creek Drainage Basin Planning Study is located on the grounds of the United States Air Force Academy (USAF). The effective Pine Creek Drainage Basin Planning Study (DBPS) was reviewed by and contains a letter of approval from the (USAF).

Section VIII of the effective Pine Creek (DBPS) is titled “Implementation.” The second paragraph of this section states that “the primary basin management goal for this particular drainage basin is one of limiting a peak discharge from the study area at State Highway 83 to historic or below for as long a period as possible.” Later in the text the “historic peak discharge” is mentioned as the 100-year historic rate of 1210 cfs.

The drainage plan contained in this current proposed Amendment No. 2 to the Pine Creek (DBPS) proposes to restrict the peak 100-year flow rate in Pine Creek at Highway 83 to a maximum of 1210 cfs with the upstream watershed in a fully developed condition. As this change in the plan is consistent with the stated goal of the effective (DBPS), and the
improvements required to accomplish this change will be constructed at the expense of and on land owned by La Plata Investments, the major land owner in the study area, it is anticipated that the City of Colorado Springs will be the sole agency for review and approval of this Amendment to the (DBPS).

It is understood that other agencies such as FEMA, the Corps of Engineers, and the Wildlife Service will have involvement in review and approval of more detailed plans for individual projects proposed in this study at the time that they are designed.

E. Drainage Criteria
Storm drainage design and management within the study area must conform to the current City Colorado Springs Criteria. In addition, the original D.B.P.S imposed a requirement for onsite detention to achieve a 35 percent reduction in the peak flow rate resulting from development (the difference between the historic and developed peak rates) on all office, research and development, commercial, and school properties. The current study proposes to eliminate this requirement for certain properties within the study area (refer to Section V).

II. PROJECT DESCRIPTION, LOCATION AND DRAINAGE

A. Basin Location and Size
The study area is a portion of the Briargate Community located in the northeast portion of Colorado Springs. As shown on the vicinity map the study area is bounded by the Kettle Creek Drainage Basin on the north and the Cottonwood Creek Drainage Basin on the south. The lower or western limit of the study area is defined by the crown of Highway 83. The upper limit of the study area is located approximately 22,000 feet to the east of Highway 83 and coincides with the upper limit of the Pine Creek Drainage Basin. The study area is approximately 2,930-acres or 4.58 square miles in size.
B. Major Drainageways and Facilities

An existing drainage facility map was prepared as a part of this study. A copy of this map is contained in the appendix of this report. As shown on the map a considerable amount of drainage improvement have been constructed to support the existing development. Three significant storm drain systems have been constructed in the study area to date. For the purpose of this study they will be referenced to as the Focus on the Family storm drain system, the South Chapel Hills Drive Storm Drain System and the North Chapel Hills Drive Storm Drain System.

The initial phase of the Focus on the Family Storm Drain System was constructed to serve as an outfall from the Focus on the Family Site. The system begins in Summer Field Subdivision Filings No. 5 and 6, is routed through the existing Summer Field Detention Pond, then south in Summerset Drive, west in Research Parkway, west across the Focus on the Family site, then north in Explorer Drive and finally west in Briargate Parkway to outfall into Detention Facility No. 1.

The South Chapel Hills Drive storm drain begins in Dynamic Drive east of Chapel Hills Drive. It is then routed north in Chapel Hills Drive to outfall into Pine Creek on the west side of Chapel Hills Drive.

The North Chapel Hills Drive storm drain begins in Lexington Drive just north of Chapel Hills Drive. It is the routed southwest in Chapel Hills Drive to outfall into Pine Creek on the west side of Chapel Hills Drive.

Pine Creek is an unimproved natural channel throughout most of the study area. At the downstream end of the study area a concrete box culvert with three (3) 14 foot span by 10-foot rise cells carries the creek under Highway 83. Upstream, a single cell 12-foot span by 10-foot rise concrete box culvert carries the outflow from Detention Facility No. 1 under Briargate Parkway and back to the Pine Creek Channel. On the upstream (north) side of Briargate Parkway, existing Detention Facility No. 1 accepts and detains all of the flow from the upstream Pine Creek Channel. A new bridge is expected to be constructed to carry Pine Creek under Chapel Hills Drive within the year.
The portion of Pine Creek that begins at Highway 83 and extends approximately 8,500 feet upstream to the historic confluence of the north and south fork of Pine Creek is for the most part heavily vegetated with willows and cattails and appears to be quite stable. This portion of channel is identified as Reaches 1, 2 and 3 on the drainage maps prepared for this study. This portion of channel has existed in a unique environment for several years in that it has been sheltered from significant frequent flows and has a minor base flow that provides the moisture required to support the vegetation. Aerial photography of the study area indicates that considerable water conservation treatment was constructed in the watershed prior to 1955. The treatment consists of small ditch/dikes constructed on the contour in many of the steeper portions of the watershed and several small on line retention ponds constructed at frequent intervals along both the north and south forks of Pine Creek upstream of the confluence. There are also several small retention basins spread throughout the watershed to intercept small concentrated flows upstream of the defined Pine Creek Channel. While a detailed analysis of this treatment has not been performed with the current study it is speculated that the treatment has sheltered the downstream channel from all but large infrequent flows. This environment has allowed the vegetation in the channel to become well established.

Upstream of the confluence of the north and south forks the character of the Pine Creek Channel changes as the presence of perennial water in the channel is greatly reduced. Several areas of the channel bottom are dry in all but large rainfall events. Other areas are kept moist by small springs and water impounded in the online retention basins. With the reduction of the available water in the channel the quantity and quality of the vegetation in the channel is also less in the reaches upstream of the confluence than found in the lower reaches of the channel.

C. Existing and Proposed Land Use
Approximately 600-acres of the 2,930-acre study area are currently developed. The remainder of the area is currently undeveloped rangeland. Much of the remaining undeveloped area is expected to develop at a relatively fast pace in the coming years.
Most of the study area has been master planned for land use. Where available, the master plan land uses were utilized for this study. The exhibit contained in the appendix entitled “Subdivision and Land Use Identification Map” indicates the current land use assumption. The following table is a summary of these land uses.

PROJECTED LAND USE
Fully Developed Condition

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Assumed Percent Impervious</th>
<th>Area (acres)</th>
<th>Percent of Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golf Course</td>
<td></td>
<td>204</td>
<td>7%</td>
</tr>
<tr>
<td>Park</td>
<td></td>
<td>128</td>
<td>4%</td>
</tr>
<tr>
<td>Open Space</td>
<td></td>
<td>151</td>
<td>5%</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 DU/AC</td>
<td>20-25</td>
<td>150</td>
<td>5%</td>
</tr>
<tr>
<td>3 DU/AC</td>
<td>30</td>
<td>422</td>
<td>14%</td>
</tr>
<tr>
<td>4 DU/AC</td>
<td>37</td>
<td>115</td>
<td>4%</td>
</tr>
<tr>
<td>2-6 DU/AC</td>
<td>44</td>
<td>189</td>
<td>6%</td>
</tr>
<tr>
<td>5 DU/AC</td>
<td>44</td>
<td>78</td>
<td>3%</td>
</tr>
<tr>
<td>6-18 DU/AC</td>
<td>56-70</td>
<td>228</td>
<td>8%</td>
</tr>
<tr>
<td>Light Industrial/Office</td>
<td>83</td>
<td>498</td>
<td>17%</td>
</tr>
<tr>
<td>Commercial</td>
<td>95</td>
<td>239</td>
<td>8%</td>
</tr>
<tr>
<td>Church</td>
<td>80</td>
<td>20</td>
<td>1%</td>
</tr>
<tr>
<td>School</td>
<td>50</td>
<td>110</td>
<td>4%</td>
</tr>
<tr>
<td>Misc. Other</td>
<td>50-68</td>
<td>21</td>
<td>1%</td>
</tr>
<tr>
<td>Unknown</td>
<td>45</td>
<td>206</td>
<td>7%</td>
</tr>
<tr>
<td>Arterial Street</td>
<td>85</td>
<td>173</td>
<td>6%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2932</td>
<td>100%</td>
</tr>
</tbody>
</table>

D. Existing and Proposed Utilities

Several underground utility lines are in place within the study area. Many more will be constructed to support future development. Consideration was given to the fact that there will several locations where storm drain facilities and other utilities must cross. The major anticipated crossings were investigated and no problems that are insurmountable were found. All future storm drains as well as other underground utilities should be designed and constructed with consideration for existing and future adjacent facilities.
E. Soils / Erosion Potential

A Hydrologic Soils Group Map was provided in the original Pine Creek DBPS. This map shows the hydrologic soil group limits and the soil mapping units as identified in the “Soil Survey of El Paso County Area, Colorado,” published by the U.S.D.A. Soil Conservation Service (SCS) in 1975. The map indicates that the majority of the soils in the study area belong to Hydrologic Soil Groups “A” and “B”. A portion of the Briargate Business Campus contains soils in the Hydrologic Group “C”. A small portion of Subbasins PN7, PN10, and PN13 contain soils identified as belonging to Hydrologic Soil Group “D”.

The erosion potential as reported in the SCS “Soils Survey for El Paso County Area,” varies from slight to high in the study area.

III. FIELD INVESTIGATIONS

A. Topographic Mapping

Topographic data utilized in this study was obtained from the City of Colorado Springs FIMS program, where available. At the extreme upper end of the study area the FIMS topographic data was not available, so topography was obtained from the U.S.G.S. Quadrangle Map for the area.

B. Subsurface Investigation

No subsurface investigation was performed specifically for this project. Subsurface investigations will be required for individual projects as appropriate.

C. Environmental Considerations

LP47, LLC dba La Plata Investments, the majority landowner in the study area, has contracted with an environmental consultant to perform a survey to identify environmentally sensitive areas within the study area. Potential areas of concern are areas that meet the qualifications of wetlands and areas that may contain the habitat of the Prebles Meadow Jumping Mouse.
In general, one of the goals of the overall plan proposed by this study is to minimize the peak flow rates contributed to Pine Creek in order to minimize impacts to the channel.

IV. HYDROLOGIC AND HYDRAULIC DESIGN EVALUATION

A. Basin Hydrology

1. Analysis Purpose

The following items were the goals of the hydrologic analysis performed for this study:

a. Estimate peak runoff rates for sub-basins to be developed in the future

b. Provide peak flow rates to be used in the design of proposed major conveyances and the evaluation of the ability Pine Creek to convey developed condition flows.

c. Provide inflow and outflow hydrographic and required storage volumes to be used in the design of proposed regional detention facilities and the evaluation of existing regional detention facilities.

d. Demonstrate the adequacy of the proposed plan to control the 100-year peak flow rate in Pine Creek as it crosses under Highway 83 to a maximum of 1210 cfs (the historic 100-year peak flow rate established by the effective DBPS).

e. Estimate peak rates that are somewhat conservative so that some flexibility may be available for changes in land use planning. A conservative approach is prudent when working with a drainage system that relies on detention basins and closed conduit conveyance systems with finite capacities.

2. Methodology

The hydrologic analysis performed for this study was based on the Soil Conservation Service (SCS) Dimensionless Unit Hydrograph utilizing the U.S. Army Corps. Of Engineers HEC-1 computer program as modified by Haestad Methods Inc., May 1991 version. The original Pine Creek DBPS also utilized the HEC-1 program. Due to a multitude of changes that have occurred in the study area since the original study was performed the original model HEC-1 model was reviewed but not utilized in the
current study. A new basin map was created along with new sub-basin boundaries, lag times, and estimated curve numbers. A new HEC-1 Model was created to evaluate the basin in an anticipated fully developed condition with the new data. A second model was then created from the first with the upper part of the watershed evaluated in the "existing condition" in order to evaluate a partially developed or "interim" condition.

a. Times of Concentration

Times of Concentration (TC) were estimated based on actual flow paths in existing developed areas and undeveloped areas for the existing condition model only. Times of concentration for the fully developed condition model were based on estimated flow paths in areas where development has not occurred. Estimated flow paths were patterned after average flow paths for similar existing development located in the Briargate area. Summary sheets containing the data utilized in the TC calculations are included in the appendix of this study. Lag time as utilized in the methodology was calculated as 0.6 tc (in hours).

b. Curve Numbers

A problem that has been encountered in the past has been matching peak flow rates calculated in detailed analyses done for drainage reports to allowable flow rates calculated in non-detailed analyses based on general assumptions for drainage basin planning studies. A goal of the current analysis was to produce peak flow rates for individual sub-basins with the HEC-1 Model that are similar to peak flow rates that would be calculated by the rational method. In an effort to achieve this goal Curve Numbers (CN) utilized in the model were first estimated for individual sub-basins based on the anticipated land uses within the individual sub-basins assuming antecedent moisture condition II. These estimated CN's were then entered into the model and peak 100-year flow rates were generated by the HEC-1 program for individual sub-basins. The peak 100-year flow rates were then entered into a spreadsheet and compared to 100-year peak flow rates generated by a rational method calculation for corresponding sub-basins. The CNs were then adjusted and the process was repeated until a reasonable
agreement existed between the peak rates generated by the HEC-1 Model output and the peak rates generated by the rational method calculation. This adjustment caused an increase in the overall predicted peak rates and volumes generated in the study area. No effort was made to adjust Curve Numbers for the undeveloped basins in the Interim condition model, as future design calculations by rational method for the condition are unlikely. Copies of the spreadsheets utilized to calculate and adjust the curve numbers are contained in the appendix of this study.

c. Design Storm
The Type IIA 24 hour storm distribution was utilized in the HEC-I model. Rainfall depths of 4.4” for the 100-year storm and 2.6” for the 5-year storm were used in the simulations. A calculation time interval of 3 minutes was used in order to satisfy the program recommendation that the time interval be less than or equal to .29 lag. A limitation of the Version of HEC-I program that was used is that it can only generate 300 hydrograph points. At three-minute intervals output is only generated for the first 15-hours of the 24-hour storm. The peak inflow and outflow rates associated with all of the facilities included in the model occur well before 15-hours of the storm has passed so this is considered insignificant for the purpose of this study.

d. Analysis Approach for Areas of Existing Development
The primary importance of including the existing developed areas in the current analysis was to generate hydrographs from these areas that were produced with the same methodology as used in the remainder of the study area. In the current analysis hydrographs from the areas of existing development were added to hydrographs from the areas of future development to produce hydrographs at points of interest to the current proposed plan.

The somewhat conservative methodology used for the current analysis has produced hydrographs in some of these areas of existing development that are larger than predicted by the existing approved MDDPs and final drainage reports for these areas. This is not necessarily indicative of problems with the previous
analyses but rather is the result of utilizing a different and potentially more conservative approach of analysis that was chosen to allow some tolerance for the unknowns that exist at the DBPS level of analysis.

One approach that was considered for modeling the existing areas was to revise the "curve numbers" and "lag times" used in the areas of existing development to produce peak flow rates similar to those produced by previous analyses. This approach was not used, as the resulting hydrographs would be skewed in volume and or in time in comparison with the remainder of the model. Both time and volume are very important when modeling detention facilities so it was determined that it was more appropriate to universally apply the chosen methods of calculating lag times and applying curve numbers than it was to match the output of several previous analyses performed by several individuals using varying methodologies and criteria.

The current analysis does not include a detailed analysis of the existing storm drain systems. At points in the watershed where runoff rates in excess of the existing downstream storm drain capacity would result in the excess flow being diverted out of the watershed or conveyed to a substantially different outfall into Pine Creek, a simplistic evaluation of the capacity of the existing storm drain was made. The downstream capacity was assumed to be equal to the full pipe conveyance capacity of the most restricted segment of the downstream storm drain of interest. Where storm drain capacity was found to be less than the 100 year peak flow rates predicted by the current analysis, the HEC I model was revised to divert excess flow from the storm drain system and route, it to Pine Creek via an approximate surface route or out of the watershed as appropriate for the location. This serves to provide a conservative estimate of the total flows that will be conveyed in Pine Creek through and out of the study area.
B. Major Drainageway Hydraulics

1. Floodplain Delineation Maps

The Federal Emergency Management Agency, Flood Insurance Study (FIS) for El-Paso County and Incorporated Areas was revised and reissued on March 17, 1997. Six Panels of the Flood Insurance Rate Maps (FIRMs) produced as a part of the FIS include portions of the Pine Creek study area. A Map entitled “Pine Creek FEMA 100-Year Flood Zone Limits” is included in the appendix of this report. The map contains the FEMA 100-year flood zone limits for all of the Pine Creek Study area as well as references to the individual FIRM panels that the information was obtained from. The floodzone limits were digitized into the map from the FIRM panels. It should be noted that some adjustments were made to the alignment of some segments of the boundaries in order to get them to generally line up with the Pine Creek Channel Topography because a direct overlay indicates that the overall accuracy of the FIRMS is not good. Due to this, the map should not be used to determine the specific location of the FEMA 100-year floodplain. Specific location of the FEMA floodplain should be determined from the FIRMs.

The 1997 FIRMs appear to contain the same base flood elevation data as the 1986 FIRMS contained for the Pine Creek Study area. It is assumed that no new study of the Pine Creek study area was performed for the 1997 revision.

2. Flood Profiles

A detailed hydraulic analysis for Pine Creek or major proposed storm drains was not included in the scope of this study. A detailed hydraulic analysis of Pine Creek between Chapel Hills Drive and Detention Facility No. 1 is presented in the “Final Drainage Report for Pine Creek Channel – Phase 1,” dated April 1996, additions February 1997, by JR Engineering, Ltd. It is anticipated that similar reports will be prepared for the remainder of Pine Creek that is proposed to remain as an open channel. Hydraulic grade lines for proposed closed conduit conveyances will be prepared with and presented on the construction drawings for the same.
V. PROPOSED DRAINAGE PLAN

A. General Description

A proposed plan for the fully developed condition and an interim, partially developed condition has been prepared as a part of this study. Both plans are presented graphically on maps contained in the appendix of this study and are described in the following text. The fully developed condition plan proposes the construction of seven (7) additional regional detention facilities distributed throughout the study area. The plan also proposes to expand existing Regional Detention Facility No. 1 and modify its outlet. The proposed detention facilities will limit the 100-year peak outflow in Pine Creek from the study area to 1210 cfs. Proposed major conveyance facilities throughout the watershed consist of closed conduits and portions of the Pine Creek Natural Channel. The proposed detention facilities are distributed to mitigate high peak flow rates throughout the conveyance system in order to limit the size of the required storm drains and the erosion potential in the natural channels. The Interim Plan indicates the portion of the proposed facilities that are required to support a certain level of development in the study area.

B. Fully Developed Condition Plan

1. Pine Creek North Fork (Sub-basins PN1 through PN14)

The watershed begins east of future Powers Boulevard. Current land planing is very general for this area. It was assumed for the purpose of this plan that the runoff from Sub-basins PN1 through PN6 including a portion of Powers Boulevard will be collected in future streets and storm drains and conveyed to and routed through proposed Regional Detention Facility “G”. Regional Detention Facility “G” is planned to have a 100-year peak inflow of 1747cfs, a 100-year peak outflow of 250 cfs, and a 100-year storage volume requirement of 60-acre feet. Outflow from Regional Detention Facility “G” will be passed under future Powers Boulevard and released into the Pine Creek North Fork Channel where it will be conveyed downstream to proposed Regional Detention Facility “F”. In the future as more detailed planning in the watershed occurs consideration should
be given to an additional detention basin in located further up in the watershed to reduce the required size of Detention Facility “G” and the upstream conveyance facilities.

Regional Detention Facility “F” is planned to receive the routed outflow from Regional Detention Facility “G” as well as all of the runoff from Sub-basins PN7 and PN8. Regional Detention Facility “F” is planned to have a 100-year peak inflow of 578 cfs, a 100-year peak outflow of 239 cfs, and a 100-year storage volume requirement of 18-acre feet. Outflow from Regional Detention Facility “F” will be passed under a future collector street and released into Pine Creek North Fork Channel where it will be conveyed downstream to proposed Regional Facility “E”. To the extent practical, the runoff from Sub-basins PN 7 and PN8 should be routed directly to Detention Facility “F” rather than into the upstream Pine Creek Channel in order to limit the potential for erosion in the channel.

Proposed Regional Detention Facility “E” is planned to receive the routed outflow from Regional Detention Facility “F” as well as all of the runoff from Sub-basins PN9 through PN13. Regional Detention Facility “E” is planned to have a 100-year peak inflow of 724 cfs, a 100-year peak outflow of 265 cfs, and a 100-year storage volume requirement of 19-acre feet. Outflow from Regional Detention Facility “E” will be conveyed in a storm drain to Analysis Point 5 located at the western limit of Sub-basin PN15. At Analysis Point 5, the runoff from Sub-basins PN14 and PN15 is planned to enter the storm drain. To the extent practical, the runoff from Sub-basins PN9 and PN10 should be collected and conveyed within the future development and released to the Pine Creek Channel near Analysis Point 4. Likewise, the runoff from Sub-basins PN11 should be collected and conveyed within the future development and released directly to Detention Facility “E”. Sub-Basin PN12 is expected to remain mostly undeveloped with its runoff continuing to enter Pine Creek along historic flow paths.
2. Pine Creek South Fork (Basins PS1 through PS13)

The watershed begins east of future Powers Boulevard. Current land planning is very general for this area. It was assumed for the purpose of this plan that the runoff from Sub-basins PS1 through PS3 will be collected in future streets and storm drains and conveyed to and routed through proposed Regional Detention Facility "D". Regional Detention Facility "D" is planned to have a 100-year peak inflow of approximately 1,073 cfs, a 100-year peak outflow of 99 cfs, and a 100-year storage volume requirement of 41 acre feet. Outflow from Regional Detention Facility "D" will be routed down a proposed storm drain in the Briargate Parkway right-of-way to Analysis Point 6 at future Powers Boulevard. All of the runoff from Sub-basins PS4 and PS5 including a portion of Powers Boulevard is planned to enter the proposed storm drain at or above Powers Boulevard. In the future as more detailed planning in the watershed occurs consideration should be given to an additional detention basin located further up in the watershed to reduce the required size of Detention Facility "D" and the upstream conveyance facilities.

The storm drain planned for the Briargate Parkway right-of-way will extend downstream from Powers Boulevard to proposed Regional Detention Facility "C". For the purpose of this analysis, it was assumed that all of the runoff from Sub-basin PS6 would be included in the storm drain flow at or before Analysis Point 7 and the flow from Sub-basin PS7 would be included in the storm drain flow at or before Analysis Point 7A. The runoff from Sub-basin PS8 was assumed to enter the storm drain at or before Analysis Point 8 at the intersection of Briargate Parkway and Union Boulevard. Runoff from Sub-basins PS9 is expected to be piped directly to Detention Facility "C" but may share a common outlet with the proposed Briargate Parkway storm drain. Analysis Point 9 represents the combined flow from the Briargate Parkway storm drain and Sub-basin PS9. Sub-basin PS10 is planned to outfall directly to Detention Facility "C". Regional Detention Facility "C" is planned to have a 100-year peak inflow
rate of 1,840 cfs, a 100-year peak outflow rate of 227 cfs, and a 100-year peak storage volume requirement of 69-acre feet. Outflow from Regional Detention Facility “C” will be routed to proposed Regional Detention Facility “B” in a proposed storm drain to be located in or adjacent to the Briargate Parkway right-of-way.

It was assumed for the purpose of this analysis that the runoff from Sub-basin PS11 will combine with the outflow from Detention Facility “C” before the proposed Briargate Parkway storm drain outfalls into Regional Detention Facility “B”. Analysis Point 10 represents this combined flow. The runoff from Sub-basin PS12 is planned to be routed through Detention Facility “B”. Regional Detention Facility “B” is planned to have a 100-year peak inflow rate of 506 cfs, a 100-year peak outflow rate of 247 cfs, and a 100-year peak storage volume requirement of 14-acre feet. Outflow from Regional Detention Facility “B” will be routed in a storm drain to a storm drain junction to be located near Analysis Point 11.

At Analysis Point 11 runoff from Sub-basin PS13 is expected to be combined with the outflow from Regional Detention Facility “B”. The flow at Analysis Point 11 will then be routed in a storm drain to a storm drain junction at Analysis Point 5A. At Analysis Point 5A this flow will be combined with the flow in the storm drain from the North Fork of Pine Creek (Analysis Point 5). The combined flow will be routed in a storm drain to an outfall in the existing Pine Creek Channel then down the natural channel to Analysis Point 12.

3. Pine Creek Main Channel (Basins PM1 through PM4)

As indicated in the approved “Master Development Drainage Plan for Village Center at Pine Creek and Preliminary/Final Drainage Report for Village Center at Pine Creek Filing No. 2 and Pine Creek Village Center Filing No. 1,” by JR Engineering, Ltd., February 1998, the runoff from Sub-basins PM 1 and PM3 will
enter the Pine Creek Channel at or upstream of analysis point 12. The runoff from Sub-basin PM2 will also enter the Pine Creek channel at or just upstream of Analysis Point 12. The estimated peak flow rates at Analysis Point 12 are $Q_5 = 408$ cfs and $Q_{100} = 985$ cfs. The combined flow will be routed in the natural Pine Creek Channel from Analysis Point 12 to Analysis Point 13 at the east side of Chapel Hills Drive.

Runoff from Sub-basin PM4 is planned to outfall into Pine Creek at two locations between Analysis Points 12 and 13. Runoff from Sub-basin PM4 is included in the peak flow rates estimated at Analysis Point 13 of $Q_5 = 437$ cfs and $Q_{100} = 1115$ cfs. The combined flow will be routed under Chapel Hills Drive to Analysis Point 19.

4. **Chapel Hills Drive South (Sub-basins CS1 through CS4)**
Analysis Point 16 represents the flow collected in Chapel Hills Drive and the existing South Chapel Hills Drive Storm Drain System located south of the Pine Creek Channel. All or portions of the drainage area contributing to Analysis Point 16 has been included in the “MDDP for Briargate Business Campus,” the “MDDP for Village Center at Pine Creek and Preliminary/Final Drainage Report for Village Center at Pine Creek Filing No. 2 and Pine Creek Village Center Filing No. 1,” the “Final Drainage Report for Chapel Hills Drive,” and or the “Final Drainage Report for Briargate Parkway.” This flow will enter the Pine Creek Channel at Analysis Point 19 on the west side of Chapel Hills Drive.

5. **Chapel Hills Drive North (Sub-basins CN1 through CN3)**
Runoff from Sub-basin CN1 will be routed through proposed Regional Detention Facility “A”. Regional Detention Facility “A” is planned to have a 100-year peak inflow rate of 275 cfs, a 100-year peak outflow rate of 9 cfs, and a 100-year peak storage volume requirement of 11-acre feet. Outflow from Regional Detention Facility “A” will be routed to Pine Creek Channel in the existing North Chapel Hills Drive Storm Drain System located in the Chapel Hills Drive right-of-way.
Regional Detention Facility “A” has been designed to facilitate park uses as well as serving as a drainage facility. Regional Detention Facility “A” represents a revision to the “MDDP for Charter Greens,” dated January 1993, as well as the “Final Drainage Report for Chapel Hills Drive,” dated January 1997. Detailed analysis of proposed Regional Detention Facility “A” is provided in the “Preliminary/Final Drainage Report for Park Site at Chapel Hills Drive and Amendment to Final Drainage Report for Chapel Hills Drive,” dated December 1997.

Analysis Point 18 represents the flow collected in Chapel Hills Drive and the North Chapel Hills Drive Storm Drain System north of the Pine Creek Channel. This flow includes the outflow from Regional Detention Facility “A” as discussed above. All or portions of the drainage area contributing to Analysis Point 18 have been included in the “MDDP for Charter Greens,” dated January 1993, the “Final Drainage Report for Chapel Hills Drive,” dated January 1993 and/or the “Preliminary/Final Drainage Report for Park Site at Chapel Hills Drive and Amendment to Final Drainage Report for Chapel Hills Drive,” dated December 1997. This flow will enter the Pine Creek Channel just upstream of Analysis Point 19 on the west side of Chapel Hills Drive.

6. Pine Creek Main Channel (Basins PM5 through PM7)

Analysis Point 19 represents the total estimated flow from the upstream Pine Creek Channel as well as the flow from Chapel Hills Drive and associated storm drain systems. The peak flow rates in the Pine Creek Channel at Analysis Point 19 are estimated at of Q₅ = 656 cfs and Q₅₀ = 1753 cfs. This flow will be routed down the natural Pine Creek Channel to Regional Detention Facility No. 1. Runoff from Sub-basin PM5 will enter the Pine Creek Channel between Analysis Point 19 and Detention Facility No. 1. The flow from Sub-basin PM5 is included with the flow in the Pine Creek Channel at Analysis Point 20. The peak flow rates in the Pine Creek Channel at Analysis Point 20 are estimated at Q₅ = 712 cfs and Q₅₀ = 1978 cfs.
Runoff from Sub-basin PM6 is planned to be collected in a future storm drain or storm drains and outfall to the Pine Creek Channel near Regional Detention Facility No. 1. The area included in Sub-basin PM6 was included in the approved "MDDP for Briargate Business Campus," dated October 1996. As discussed elsewhere in this study contrary to the approved MDDP the analysis done for the current study assumed free discharge from this sub-basin. Because some development in the sub-basin has proceeded this study at least some of the constructed outfall lines from the sub-basin may not be adequate to convey free discharge from developing properties. Discharge from future development in the sub-basin should be limited only by fitting within the land use assumptions made for this current study and the availability of an adequate outfall to Pine Creek.

Runoff from Sub-basin PM6 is assumed to be included in the flow in Pine Creek Channel at Analysis Point 21. The peak flow rates at Analysis Point 21 are estimated at $Q_5 = 797$ cfs and $Q_{100} = 2149$ cfs. This is the total estimated flow to Regional Detention Facility No. 1 from Pine Creek Channel.

Runoff from Sub-basin PM7 is planned to be collected and conveyed to Regional Detention Facility No.1 in a proposed storm drain and open channel system that will originate at the intersection of Highway 83 and Springcrest Road. Free discharge was assumed from the sub-basin. Discharge from future development within the sub-basin should be limited only by fitting within the land use assumptions made for this current study and the availability of an adequate outfall to Regional Detention Facility No. 1.

For the purpose of this analysis it is assumed that all of the runoff from Sub-basin PM8, a portion of the Briargate Parkway right-of-way will be routed through Detention Facility No. 1.

7. **Focus on the Family Storm Drain System (Sub-basins F1 through F7)**

 The current study does not propose changes to the drainage criteria implemented with previous plans for this area. Due to the capacity limitations of the outfall
line from this area onsite detention as called for in the “MDDP for Briargate Business Campus,” dated October 1996, will remain a requirement for this area. As discussed in Section IV, Part A and this area was included in the current study so that hydrographs for this area could be produced with methodology consistent with the methodology applied to the remainder of the study area. These hydrographs were needed for addition to hydrographs from the remainder of the study area to evaluate the capacity of Regional Detention Facility No. 1 and the total outflow from the study area.

The more conservative hydrology methodology utilized for the current study generated 100-year storm hydrographs from portions of this area that were in excess of the existing downstream storm drain capacity. At Analysis Point 22 the excess flow was assumed to flow out of the Pine Creek Drainage Basin into Cottonwood Creek Drainage Basin. At Analysis Point 24 the excess flow was assumed to be routed on the surface to enter Pine Creek Channel near Analysis Point 27. At Analysis Point 25 the excess flow was assumed to be routed on the surface down Briargate Parkway to enter Pine Creek Channel near Analysis Point 26. Flow within the full pipe capacity of the storm drain system was routed within the HEC 1 model to Regional Detention Facility No. 1. The flow from the Focus on the Family storm drain combined with the flow from Pine Creek (Analysis Point 21) and flow from Sub-basins PM7 and PM8 represents the total planned inflow to Regional Detention Facility No. 1. The existing Regional Detention No. 1 is to be expanded in volume and fitted with a modified outlet structure. Regional Detention Facility No. 1 is planned to have a 100-year peak inflow rate of 2809 cfs, a 100-year peak outflow rate of 1147 cfs, and a 100-year peak storage volume requirement of 96-acre feet. Outflow from Regional Detention Facility No. 1 will be routed under existing Briargate Parkway to Analysis Point 26 in Pine Creek Channel via an existing 12’ span by 10’ rise concrete box culvert. At Analysis Point 26 the excess flow that was assumed to be routed in the street from Analysis Point 25 will enter Pine Creek Channel. This flow combined with the outflow from Regional Detention Facility No. 1 will
result in peak flow rates estimated at $Q_5 = 488$ cfs and $Q_{100} = 1147$ cfs. The combined flow will be routed down the Pine Creek natural channel to Analysis Point 27 on the east side of Highway 83.

8. Pine Creek Main Channel (Basins PM9, PM10, and PM11)
Sub-basins PM9 and PM11 will be allowed free discharge of the 100-year peak rate to Pine Creek through appropriate conveyance and outlet facilities. Free discharge of the 100-year peak rate from these areas is conducive to limiting the 100-year peak discharge in Pine Creek at Highway 83 to less than 1,210 cfs. Free discharge of the 100-year runoff will allow the bulk of the runoff from these areas to pass downstream ahead of significant discharge from upstream Detention Facility No. 1. Detention Facility No. 1 will be modified per this plan to facilitate greater lag of the discharge from the facility than is provided by the existing facility. Due to the proximity of Sub-basins PM9 and PM11 to the discharge point of the DBPS area, limited detention of storm water from these sub-basins may be required in order to mitigate local peak flows from frequent events and or improve storm water quality. The detention requirements will be determined at the time of Final Drainage Report as each sub-basin develops. If facilities to accomplish the above are required they should be designed to not significantly lag the discharge of the larger storms.

Runoff from Sub-basin PM10 is to be controlled to a maximum 100-year peak flow rate of 140 cfs as required by the Final Drainage Report for “Briargate Business Campus Filing No. 13,” approved October 31, 1996.

Runoff from Sub-basin PM9 is planned to enter Pine Creek Channel upstream or at Analysis Point 27. The HEC-I Model for this study assumes that runoff from Sub-basin PM10 and PM11 will enter Pine Creek below Analysis Point 27. Analysis Point 28, at the east side of Highway 83 includes the flow from Analysis Point 27 and Sub-basins PM10 and PM11. The model predicts peak flow rates in the Pine Creek Channel at Analysis Point 28 will be $Q_5 = 633$ cfs, $Q_{100} = 1207$ cfs. This is the total planned discharge to Pine Creek from the study area.
C. Interim Condition Drainage Plan

Current development projections for the study area call for construction of Regional Detention Facilities “A” Regional Detention Facilities “B” and “E” and their storm drain outfalls to Pine Creek, and Regional Detention Facility “C” without an outfall, and expansion in volume and modifications to the outlet of existing Regional Detention Facility No. 1. in the near future. The interim condition plan demonstrates the need for these facilities and indicates the amount of development that these facilities will support. In the future as plans for development further upstream solidify, additional interim condition planning will be required.

The map titled “Interim Condition Basin Map and Master Plan,” contained in the appendix indicates the upstream limits of the land assumed to be fully developed for the interim condition plan. Land located upstream of the indicated limits is considered to be mostly undeveloped in the interim condition plan. Interim condition sub-basins were delineated for the interim condition analysis. The labels for these sub-basins begin with the letter “I”. Assumed development in the interim condition basins was limited to the following:

- 12.4-acres of the Powers Boulevard Corridor at 85% impervious area
- 30-acres north of Old Ranch Road at 1 DU/AC
- 26.5-acres of Basin IPS9 at 4 DU/AC (portion of Sagewood)
- 10-acres of Basin IPS10 at 50% impervious area (YMCA)
- 16-acres of Basin IPS10 at 3 DU/AC (portion of existing Gatehouse Filing No. 5)

1. Pine Creek North Fork (Sub-basins IPN1 through IPN5 and PN9)

Runoff patterns in IPN1 through IPN5 are assumed to remain unchanged from the existing condition. The 100-peak flow rate from these sub-basins in addition to the fully developed condition runoff from Sub-basin PN9 will be concentrated at Analysis Point 4 in the Pine Creek Channel. The 100-year peak flow rates associated with Analysis Point 4 are estimated at $Q_5 = 56$ cfs and $Q_{100} = 355$ cfs.
The flow will be routed down the Pine Creek Channel to proposed Regional Detention Facility “E”.

2. Pine Creek North Fork (Sub-basins PN11 through PN13 and all downstream)
Runoff from fully developed condition PN11 through PN13 will be routed through Regional Detention Facility “E” as described in the fully developed conditional plan. Regional Detention Facility “E” is planned to have a 100-year peak inflow rate of 643 cfs, a 100-year peak outflow rate of 267 cfs, and a 100-year peak storage volume requirement of 19-acre feet. The storage volume requirement for the interim condition is greater than the storage volume requirement in the fully developed condition. Region Detention Facility “E” should be designed to provide the required interim condition storage volume as well as meeting the required outflow criteria for both interim and fully developed conditions.

Downstream the plan is unchanged from the plan presented for the fully developed condition with the exception that peak flow rates in the major facilities are slightly less than for the fully developed condition. Estimated peak flow rates are shown on the “Interim Condition Basin Map and Master Plan.”

3. Pine Creek South Fork (Sub-basins IPS1 through IPS5)
Runoff patterns in IPS1 through IPS5 are assumed to remain unchanged from the existing condition. Two temporary diversions are proposed to be constructed to direct the runoff generated in these basins to Regional Detention Facility “C”. One of these diversions is proposed to be constructed at the lower end of Sub-basin IPS5 as an expansion of an existing small dam. The second diversion is proposed to be constructed at the lower end of Sub-basin IPS2 in or adjacent to the future Briargate Parkway right of way. Runoff from Sub-basins IPS1 and IPS2 will concentrate near Analysis Point I6 as it does in the existing condition. Runoff from Sub-basins IPS3 through IPS5 will concentrate at an existing stock pond near Analysis Point I5. The 100 peak flow rated associated with Analysis
Point I5 are estimated at $Q_5 = 39$ cfs and $Q_{100} = 265$ cfs. The proposed berm at this location will provide positive diversion of the flow from Analysis Point I5 through Sub-basin IPS2 to Analysis Point I6. At Analysis Point I6 the estimated peak flow rates are estimated at $Q_5 = 55$ cfs and $Q_{100} = 399$ cfs. This flow will enter Regional Detention Facility “C” via a temporary inlet structure and will be combined with developed condition runoff from Sub-basin PS10. Regional Detention Facility “C” is expected to be constructed to meet the fully developed condition storage volume requirements in the “interim condition” but not be fitted with an outlet in the “interim condition.” The outfall line from Detention Facility “C” will be constructed prior to paving of the adjacent portion of Briargate Parkway or when predicted runoff exceeds its capacity as a retention pond. Regional Detention Facility “C” is planned to have an interim condition 100-year peak inflow rate of 409 cfs, a 100-year peak outflow rate of 0 cfs, and a 100-year peak storage volume requirement of 42-acre feet.

4. Pine Creek South Fork (Sub-basins IPS6 through IPS10)

Runoff patterns in Sub-basins IPS6 through IPS8 are assumed to remain unchanged from the existing condition. Runoff from these Sub-basins will be concentrated at Analysis Point I7 in the future Briargate Parkway right-of-way. Estimated peak flow rates associated with Analysis Point I7 are $Q_5 = 8$ cfs and $Q_{100} = 186$ cfs. This flow will follow the historic flow path to Analysis Point I8. At or above Analysis Point I8 it is assumed that the runoff from undeveloped Sub-basin IPS8 and partially developed Sub-basin IPS9 is added to the routed flow from Analysis Point I7. The combined flow at Analysis Point I8 will have estimated peak flow rates of $Q_5 = 49$ cfs and $Q_{100} = 281$ cfs. Runoff at Analysis Point I8 will be routed in the natural Pine Creek South Fork Channel to Analysis Point I9. At or near Analysis Point I9 runoff from partially developed Sub-basin IPS10 will enter the Pine Creek South Fork Channel. The combined flow at Analysis Point I9 will have estimated peak flow rates of $Q_5 = 99$ cfs and $Q_{100} = 427$ cfs. This compares well to the 100-year historic flow rate of 476 cfs presented for this portion of the watershed in “Amendment No. 1 to the Pine Creek Drainage Basin Planning Study,” dated July 29, 1992. The flow at
Analysis Point 19 will be routed down the Pine Creek South Fork Channel to proposed Regional Detention Facility “B”.

5. Pine Creek South Fork (Sub-basins PS11 and PS12 and Downstream)
Runoff from fully developed condition Sub-basins PS11 and PS12 will be collected and routed through Regional Detention Facility “B” as described in the fully developed condition plan. Regional Detention Facility “B” is planned to have an interim condition 100-year peak inflow rate of 663 cfs, a 100-year peak outflow rate of 266 cfs, and a 100-year peak storage volume requirement of 17-acre feet. The storage volume requirement for the interim condition is greater than the storage volume requirement in the fully developed condition. Region Detention Facility “B” should be designed to provide the required interim condition storage volume as well as meeting the required outflow criteria for both interim and fully developed conditions.

Downstream the plan is unchanged from the plan presented for the fully developed condition with the exception that peak flow rates in the major facilities are slightly less than for the fully developed condition. Estimated peak flow rates are shown on the “Interim Condition Basin Map and Master Plan.”

D. Major Proposed Facilities

1. Storm Drains
Estimated required storm drain sizes are indicated on the Maps titled “Basin Map and Master Plan,” contained in the appendix of this study. Design of these storm drains should include a detailed hydraulic analysis and sizes should be adjusted as required. Special attention should be given to the hydraulic grade line near the outlets of detention facilities to assure that backwater in the outfall lines will not interfere with the planned stage/discharge relationship.
2. Regional Detention Facilities
 a. General Design Criteria

Design and construction of regional detention facilities proposed by this plan shall conform to the requirements of the City of Colorado Springs and the State Engineer. To the extent practical the detention facilities shall be recessed into the ground rather than created behind large unarmored embankments. To the extent practical the detention facilities shall be located on the upstream side of street crossings and shall utilize the roadway embankments as dams. The general design criteria for the detention facilities shall include the following:

The 100-year maximum water surface design elevation shall not exceed the height of the emergency spillway with the normal outlet operating normally.

- Each detention facility shall be fitted with an armored emergency spillway capable of passing the full 100-year peak inflow rate. In the case of Regional Detention Facilities “E” and “F” located downstream of Regional Detention Facility “G” the emergency spillways shall be capable of passing the highest inflow rate associated with the proposed detention facilities located upstream.

- The emergency spillways shall be oriented to direct flow in a manner that will minimize the potential for property damage and threat to human safety downstream if a spill occurs. In the case of Detention Facilities “E”, “F” and “G” the emergency spillways should be oriented to pass overflow to downstream Pine Creek Channel. Sufficient capacity should be maintained in the Pine Creek Channel to allow the design overflow to pass without damage to structures. In the case of Detention Facilities “B”, “C” and “D” the emergency spillways should be oriented to pass overflow to the adjacent Briargate Parkway right-of-way. The potential for a large
flow to occur down Briargate Parkway should be considered in the design of the roadway and adjacent development.

- At least 2 feet of freeboard shall be provided above the water surface associated with the normal outlet clogged and the emergency spillway passing the full 100-year peak inflow rate.

b. Plan Assumptions for Individual Regional Detention Facilities

The following assumptions were utilized in the hydrologic modeling performed in the preparation of the plan. If the final design of these detention facilities deviates from these assumptions the changes should be modeled in the overall study done for this plan to verify that the changes do not negatively impact downstream facilities or planned peak flow rates downstream.

- **Regional Detention Facility No. 1**

 The modeled volume was based on the contours shown on the FIMs Topographic Map with 0.65 acre of surface area added. The proposed expansion will result in a storage volume increase of approximately 11.5-acre feet below elevation 6578.0. Modeled outflow was based on a modified outlet structure instead of the existing outlet. The modeled outlet consists of a staged outlet. The lowest opening was assumed to consist of the bottom 2.5' of the existing box culvert. The remainder of the upstream end of the existing box culvert was assumed to be blocked. The upper opening of the assumed outlet was assumed to be a sharp crested weir with a crest elevation of 6567.2. The upper opening weir length was assumed to be equal to 12.77' (the skewed width of the CBC) adjusted for edge contractions. It is assumed that the upper opening will discharge into the existing box culvert. It is assumed that the upper opening will be created with construction of a three-sided structure on top of or a reconstructed portion of the existing CBC. The three-sides were assumed to terminate at elevation 6573.0 to allow flow over all walls of the structure above the terminal elevation.
The HEC-1 Model predicts a maximum 100-year water surface elevation of 6573.1 in the 100-year design storm. This maximum water surface is 1.9 lower than the existing emergency spillway crest for the facility.

MODIFIED DETENTION FACILITY NO.1
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Outflow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>0.38</td>
<td>194</td>
</tr>
<tr>
<td>58</td>
<td>4.93</td>
<td>275</td>
</tr>
<tr>
<td>60</td>
<td>14.99</td>
<td>344</td>
</tr>
<tr>
<td>62</td>
<td>25.74</td>
<td>401</td>
</tr>
<tr>
<td>64</td>
<td>37.09</td>
<td>451</td>
</tr>
<tr>
<td>66</td>
<td>49.05</td>
<td>496</td>
</tr>
<tr>
<td>68</td>
<td>61.62</td>
<td>560</td>
</tr>
<tr>
<td>70</td>
<td>74.83</td>
<td>747</td>
</tr>
<tr>
<td>72</td>
<td>88.75</td>
<td>998</td>
</tr>
<tr>
<td>74</td>
<td>103.43</td>
<td>1,247</td>
</tr>
<tr>
<td>75</td>
<td>111.06</td>
<td>1,750</td>
</tr>
</tbody>
</table>

Normal Outlet Staged

Low Stage: 12.77' Wide X 2.50' High Vertical Orifice, Invert = 6553.00
High Stage: 12.77' Wide Weir, Invert = 6567.20
Regional Detention Facility “A”
The stage storage discharge curve is based on the design drawings for the proposed facility. The bottom of the pond is staged in order to maintain certain portions of the pond bottom dry in frequent rainfall events in order to facilitate park uses.

DETENTION FACILITY “A”
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Outflow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>796.6</td>
<td>0</td>
<td>2.35</td>
</tr>
<tr>
<td>797.0</td>
<td>0.01</td>
<td>2.54</td>
</tr>
<tr>
<td>798.0</td>
<td>0.22</td>
<td>3.00</td>
</tr>
<tr>
<td>800.00</td>
<td>0.99</td>
<td>3.73</td>
</tr>
<tr>
<td>802.0</td>
<td>1.95</td>
<td>4.35</td>
</tr>
<tr>
<td>803.5</td>
<td>2.80</td>
<td>4.75</td>
</tr>
<tr>
<td>803.51</td>
<td>4.25</td>
<td>5.36</td>
</tr>
<tr>
<td>804.0</td>
<td>5.31</td>
<td>5.50</td>
</tr>
<tr>
<td>804.1</td>
<td>6.51</td>
<td>8.39</td>
</tr>
<tr>
<td>805.5</td>
<td>11.64</td>
<td>9.01</td>
</tr>
<tr>
<td>806.5</td>
<td>15.36</td>
<td>9.41</td>
</tr>
</tbody>
</table>

Normal Outlet: 12” dia storm drain
Normal Outlet Invert Elevation: 95.0
• **Regional Detention Facility “B”**
 The modeled volume was based on a preliminary grading plan prepared for the facility. In order to facilitate obtaining a flood plain development permit to construct the facility it is planned to have a maximum 100-year water surface that is below the FEMA base flood elevation and is mostly contained within the FEMA regulatory 100-year floodplain. The requirements associated with facilitating construction in the FEMA Regulatory Floodplain have resulted in a design that will produce peak 100-year water surface elevations well below the emergency spillway crest in the fully developed condition with upstream detention facilities in place.

DETENTION FACILITY “B”
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>72.0</td>
<td>0.06</td>
<td>22</td>
</tr>
<tr>
<td>74</td>
<td>0.17</td>
<td>73</td>
</tr>
<tr>
<td>76</td>
<td>3.30</td>
<td>130</td>
</tr>
<tr>
<td>78</td>
<td>5.82</td>
<td>169</td>
</tr>
<tr>
<td>80</td>
<td>8.73</td>
<td>202</td>
</tr>
<tr>
<td>82</td>
<td>12.07</td>
<td>236</td>
</tr>
<tr>
<td>84</td>
<td>15.85</td>
<td>260</td>
</tr>
<tr>
<td>86</td>
<td>20.07</td>
<td>285</td>
</tr>
<tr>
<td>87.6</td>
<td>23.60</td>
<td>301</td>
</tr>
<tr>
<td>88</td>
<td>24.76</td>
<td>371</td>
</tr>
<tr>
<td>90</td>
<td>29.96</td>
<td>1222</td>
</tr>
</tbody>
</table>

Normal Outlet: 54” dia storm drain
Normal Outlet Invert Elevation: 70.2
- Regional Detention Facility “C”

DETENTION FACILITY “C”

Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>2.73</td>
<td>23</td>
</tr>
<tr>
<td>66</td>
<td>9.72</td>
<td>70</td>
</tr>
<tr>
<td>68</td>
<td>18.56</td>
<td>110</td>
</tr>
<tr>
<td>70</td>
<td>20.03</td>
<td>140</td>
</tr>
<tr>
<td>72</td>
<td>38.15</td>
<td>168</td>
</tr>
<tr>
<td>74</td>
<td>48.95</td>
<td>190</td>
</tr>
<tr>
<td>76</td>
<td>60.45</td>
<td>215</td>
</tr>
<tr>
<td>78</td>
<td>72.75</td>
<td>232</td>
</tr>
<tr>
<td>80</td>
<td>85.85</td>
<td>245</td>
</tr>
<tr>
<td>82</td>
<td>99.66</td>
<td>258</td>
</tr>
</tbody>
</table>

Normal Outlet: 48” dia storm drain
Normal Outlet Invert Elevation: 62.0

- Regional Detention Facility “D”

DETENTION FACILITY “D”

Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>6.8</td>
<td>18</td>
</tr>
<tr>
<td>104</td>
<td>14.3</td>
<td>54</td>
</tr>
<tr>
<td>106</td>
<td>22.4</td>
<td>72</td>
</tr>
<tr>
<td>108</td>
<td>31.1</td>
<td>87</td>
</tr>
<tr>
<td>110</td>
<td>40.6</td>
<td>99</td>
</tr>
<tr>
<td>112</td>
<td>50.8</td>
<td>110</td>
</tr>
<tr>
<td>114</td>
<td>61.8</td>
<td>120</td>
</tr>
</tbody>
</table>

Normal Outlet: 36” dia storm drain
Normal Outlet Invert Elevation: 100.0
- Regional Detention Facility “E”

DETENTION FACILITY “E”
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>88</td>
<td>1.25</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>3.91</td>
<td>136</td>
</tr>
<tr>
<td>92</td>
<td>6.93</td>
<td>173</td>
</tr>
<tr>
<td>94</td>
<td>10.31</td>
<td>210</td>
</tr>
<tr>
<td>96</td>
<td>14.07</td>
<td>240</td>
</tr>
<tr>
<td>98</td>
<td>18.24</td>
<td>263</td>
</tr>
<tr>
<td>100</td>
<td>22.83</td>
<td>280</td>
</tr>
<tr>
<td>102</td>
<td>27.87</td>
<td>1431</td>
</tr>
</tbody>
</table>

Normal Outlet: 54” dia storm drain
Normal Outlet Invert Elevation: 84.0

- Regional Detention Facility ”F”

DETENTION FACILITY “F”
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>92</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>94</td>
<td>0.1</td>
<td>70</td>
</tr>
<tr>
<td>96</td>
<td>0.7</td>
<td>112</td>
</tr>
<tr>
<td>98</td>
<td>1.5</td>
<td>143</td>
</tr>
<tr>
<td>100</td>
<td>4.4</td>
<td>170</td>
</tr>
<tr>
<td>102</td>
<td>7.8</td>
<td>190</td>
</tr>
<tr>
<td>104</td>
<td>11.7</td>
<td>210</td>
</tr>
<tr>
<td>106</td>
<td>16.1</td>
<td>230</td>
</tr>
<tr>
<td>108</td>
<td>21.0</td>
<td>250</td>
</tr>
<tr>
<td>110</td>
<td>26.4</td>
<td>265</td>
</tr>
</tbody>
</table>

Normal Outlet: 48” dia storm drain
Normal Outlet Invert Elevation: 90.0
- **Regional Detention Facility “G”**
 The normal outlet was modeled based on a 48” diameter storm drain. A 10’ by 10’ box culvert to be constructed under future Powers Boulevard with a weir box on the upstream end has been evaluated as a means to carry the pond outflow from the 48” diameter normal outlet as well as providing an emergency spillway. Due to the large vertical distance between the likely grade of Powers Boulevard and the Pine Creek Channel on the downstream side of the crossing the cost of armoring the downstream embankment slope will likely offset the cost of constructing a box culvert.

DETENTION FACILITY “G”
Stage Storage Discharge Data

<table>
<thead>
<tr>
<th>Water Surface Elevation (Feet)</th>
<th>Cumulative Storage Volume (AC/FT)</th>
<th>Normal Outlet Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>62</td>
<td>2.8</td>
<td>47</td>
</tr>
<tr>
<td>64</td>
<td>8.0</td>
<td>93</td>
</tr>
<tr>
<td>66</td>
<td>14.1</td>
<td>130</td>
</tr>
<tr>
<td>68</td>
<td>20.9</td>
<td>160</td>
</tr>
<tr>
<td>70</td>
<td>28.4</td>
<td>180</td>
</tr>
<tr>
<td>72</td>
<td>36.6</td>
<td>203</td>
</tr>
<tr>
<td>74</td>
<td>45.5</td>
<td>222</td>
</tr>
<tr>
<td>76</td>
<td>55.11</td>
<td>240</td>
</tr>
<tr>
<td>78</td>
<td>65.3</td>
<td>262</td>
</tr>
<tr>
<td>80</td>
<td>76.3</td>
<td>280</td>
</tr>
<tr>
<td>82</td>
<td>88.2</td>
<td>295</td>
</tr>
</tbody>
</table>

Normal Outlet: 48” dia storm drain
Normal Outlet Invert Elevation: 59.0

c. **Regional Detention Facility Maintenance**
 The eight Regional Detention Facilities proposed in this document are all proposed to be publicly owned and publicly maintained for functional purposes. Any aesthetic maintenance beyond the City’s maintenance will be by and totally at the expense of others and will require an agreement with the City.
3. Pine Creek Channel
 a. General
 As discussed elsewhere in this report the character of the Pine Creek Channel varies considerably throughout the study area. Portions of the channel are well defined, well vegetated, and are aligned in a manner that allows reasonable development of adjacent land. Other portions are not well defined, lack significant vegetation, lack adequate conveyance capacity, and or are not aligned in a manner that allows reasonable development of adjacent properties. The plan for the majority of Pine Creek Channel between Powers Boulevard and Highway 83 is to preserve it at as a natural channel or a natural channel with some man made stabilization that will serve as the major drainage conveyance. In other portions of the study area storm drains will serve as the major drainage conveyances and the natural channel will be eliminated.

 The following is a brief discussion of Pine Creek Channel reaches PC1 through PC7 as shown on the maps titled “Basin Map and Master Plan,” contained in the appendix of this report.

 • Reach PC1
 Treatments proposed in past studies for this reach have included replacing the natural channel with a closed conduit. Due to current concerns about the Prebles Meadow Jumping Mouse, it is likely the channel will be required to be preserved in its natural condition with or without some man made stabilization. Further analysis to demonstrate the adequacy of the natural channel or proposed treatment and potentially an agreement between the developer of the property and the City will be required in the future when the desired treatment is known.

 • Reaches PC2 and PC3
 These two reaches are well vegetated and appear to be quite stable at the current time. It is expected that treatment in these reaches will be limited to energy dissipaters at the outfalls of storm drains contributing to the channel and potentially minor bank and channel stabilization. The current plan is for LP47,L.L.C. dba La Plata Investments to maintain ownership of the channel and to be responsible for
maintenance of the same, excepting the public street crossings. A detailed Hydraulic Analysis and Report has been prepared for Reach PC2 ("Pine Creek Channel-Phase 2," dated February 1997). La Plata is currently working to complete a maintenance agreement with the City for Reach PC2. A detailed Hydraulic Analysis of Reach PC3 will be required in the future as well as a maintenance agreement with the City of Colorado Springs.

- **Reach PC4**
 This reach is contained in a valley floor alluvial fan and is characterized by multiple, ill-defined flow paths lacking significant vegetation, natural stability, and adequate conveyance capacity. Due to this an underground storm drain is proposed to provide conveyance of runoff up to the 100-year planned discharge through this reach. It is also proposed that the corridor that the land above the proposed storm drain be graded into a broad swale recessed below the adjacent development. This swale will provide an emergency relief channel for the storm drain and the detention facilities that will be constructed upstream. In keeping with the proposed design criteria for the proposed detention facilities, the swale should be designed to allow passage of the largest peak 100-year inflow rate of the facilities to be located upstream. The proposed swale will also maintain continuity of the greenway or openspace that will occur along the upstream and downstream reaches of Pine Creek Channel. It is expected that the City of Colorado Springs will be responsible for the maintenance of the proposed storm drain.

- **Reaches PC5 through PC6**
 These reaches are generally well defined and contain some natural vegetation to aid in their stability. However, given the relatively steep natural slopes of these reaches and the lack of heavy vegetation it is anticipated that these reaches will require construction of grade control and potentially some spot armoring of banks in order to allow them to convey developed condition flows. The current plan proposes 100-year peak flow rates in these reaches that are similar or lower than historic 100-year flow rates. However, peak flow rates in smaller more frequent events will be increased and the frequency of flows in the channel will be much greater that in the existing condition when the contributing watershed is developed. Development of the
watershed will also reduce the sediment inflow into the channel. These factors will increase the potential for erosion of the channel. Detailed hydraulic analysis of the channel and the proposed treatment will be provided prior to significant development of areas contributing to these reaches. At the current time, with concerns about the Prebles Meadow Jumping Mouse, it is unknown what type of treatment will be allowed in the channel.

4. Proposed Drainage Discharge Constraints

The following discharge constraints are proposed for the study area:

a. The requirement for onsite detention to achieve a 35 percent reduction in the peak flow rate resulting from development (the difference between the historic and developed peak rates) on all office, research and development, commercial, and school properties as implemented with the original DB.P.S. will remain in effect for all existing developed properties and for future developing properties within Basins CS2, CS3, F1, F4, F5, F6, F7, PM6 and PM10 as shown on the Fully Developed Condition Drainage Map included in this study unless the following conditions are met.

- A separate detailed drainage analysis or the analysis done for this study demonstrates that the downstream existing or proposed drainage conveyance facilities are adequate to allow a greater discharge rate from the property.
- A detailed drainage analysis or the analysis performed for this study demonstrates that the greater discharge rate will not negatively impact downstream detention facilities or the overall discharge peak discharge goals of this study.

b. Runoff from Basin CS4 as shown on the Fully Developed Condition Drainage Map included in this study shall be routed through a common offsite private detention pond as proposed in the approved “Master Development Drainage Plan
for Village Center at Pine Creek and Preliminary /Final Drainage Report for Village Center at Pine Creek Filing No. 2 and Pine Creek Village Center Filing No. 1,” by JR Engineering, Ltd., dated February 11, 1998 unless the following conditions are met:

- A detailed drainage analysis demonstrates that the downstream existing or proposed drainage conveyance facilities are adequate to allow a greater discharge rate from the drainage basin.
- A separate detailed drainage analysis or the analysis performed for this study demonstrates that the greater discharge rate will not negatively impact downstream detention facilities or the overall discharge peak discharge goals of this study.

c. Free discharge of the 100-year runoff from Sub-basins PM9 and PM11 will be allowed provided that the following criteria is followed:

- Adequate downstream conveyance facilities exist or be provided in accordance with City of Colorado Springs policy and criteria.
- Land uses must be similar or less intensive than the land uses assumed for the purpose of this study unless a detailed drainage analysis indicates that free discharge from the more intensive land use will not have an adverse affect on the downstream drainage facilities.

Due to the proximity of Sub-basins PM9 and PM11 to the discharge point of the DBPS area, limited detention of storm water from these sub-basins may be required in order to mitigate local peak rates from frequent runoff events and or improve the storm water quality. The detention requirement will be determined at the time of Final Drainage Report as each sub-basin develops. If facilities to accomplish the above are required, they should be designed to not significantly lag the discharge of the larger storms.

d. Free discharge of drainage from the remainder of the study area will be allowed provided that the following criteria is followed:
• Adequate downstream conveyance facilities must exist or be provided in accordance with City of Colorado Springs policy and criteria.

• Runoff must be routed through the regional detention facilities as proposed in this study unless a detailed drainage study demonstrates the adequacy of alternative routing to achieve the discharge goals of this study.

• Land uses must be similar or less intensive than the land uses assumed for the purpose of this study unless a detailed drainage analysis indicates that free discharge from the more intensive land use will not have an adverse affect on the downstream drainage facilities.

5. Recommendations for Implementation

The portion of the Pine Creek drainage basin located east of Highway 83 is considered a closed basin thus, the developer of the properties within the basin is responsible for constructing the drainage improvements related to development within the basin. Construction of required drainage improvements should be timed to coincide with or precede construction of the development that the improvement will support. Several major proposed facilities have been identified in the interim drainage plan included in this study. A summary of these major proposed facilities and the development that the improvements will be required for follows:

• Regional Detention Facility “A” and the associated inflow collection system will be required to support future development in Sub-basin CN1

• Regional Detention Facilities “B” and “E”, their proposed outfall storms drains to Pine Creek and collection systems in the developing area will be required to support development in Sub-basins PN9, PN11 through PN15 and PS10 through PS13.

• Regional Detention Facility “C” (constructed to serve, as a temporary retention facility) will be required to support development in Sub-basins PN9, PN11 through PN15 and PS10 through PS13.

It should be noted that the requirement for construction of Regional Detention Facilities “B” and “C” to support development in Sub-basins PN9 through PN15 and PS10 through PS13 is related in part to the need to eliminate the
FEMA 100-year flood zone that Briargate Parkway must cross to support development in this area.

- La Plata Investments plans to construct the proposed modifications to existing Regional Detention Facility No. 1 prior to May 1999. Construction of the modifications in this time frame is contingent upon timely receipt of the required permits and approvals.

- Pine Creek Channel Stabilization in Reach PC5 as determined by future analysis will be required to support development in Sub-basin PN9. Development in Sub-basin PN 11 will not contribute significant runoff to the channel and thus will not create an immediate need for improvements in Reach PC5.

- Additional storm drains shall be constructed as needed to provide collection systems and outfalls for individual development or prior to pavement construction in the roadways they are planned to be located in.

- Prior to development extending beyond the areas considered to be developed in the interim drainage plan, a revised interim plan should be prepared to identify the drainage facilities required to support additional development.

6. Requirements of Governmental Agencies
 Outside of the City of Colorado Springs

Several governmental agencies external to the City of Colorado Springs will have involvement in the review and approval process for individual construction projects proposed for the study area.

- The Federal Emergency Management Agency has jurisdiction over development within the regulatory 100-year floodplain. The developer will be required to obtain Letter of Map Revisions for modifications that the proposed development will make to the floodplain within the study area.
The U.S. Army Corps of Engineers has jurisdiction over development within or modifications to features defined as “waters of the United States.” Some or potentially all of the modifications proposed to the Pine Creek Channel may require permitting by the U.S. Army Corps of Engineers.

The Prebles Meadow Jumping Mouse is currently listed as a threatened species by the U.S. Fish and Wildlife Service. Portions of the study area may contain habitat for the mouse. Due to this, some or all of the proposed projects may be subject to review by local, state, and/or Federal agencies in regards to potential impacts on the mouse.

The office of the State Engineer has jurisdiction over many of the dams in the State. Depending upon final design, configurations of the proposed Regional Detention Facilities some may be “Jurisdictional Dams,” and may be “exempt” or “nonexempt” from the rules of the State Engineer. Facilities should be evaluated on an individual basis at the time of design.
REFERENCES

APPENDIX

VICINITY MAP

HYDROLOGIC MODEL INPUT CALCULATIONS
- Curve Numbers
- Curve Number Adjustment
- Lag Time

HYDROLOGIC MODEL (HEC-1) OUTPUT
FULLY DEVELOPED CONDITION
- 5-Year Storm
- 100-Year Storm

INTERIM CONDITION
- 5-Year Storm
- 100-Year Storm

MAPS (FOLDED IN POCKETS)
- FULLY DEVELOPED CONDITION BASIN MAP AND MASTER PLAN
- INTERIM CONDITION BASIN MAP AND MASTER PLAN
- F.E.M.A. 100-YEAR FLOOD FACILITY MAP
- SUBDIVISION AND LAND USE IDENTIFICATION MAP
 EXISTING DRAINAGE FACILITIES MAP
VICINITY MAP
HYDROLOGIC MODEL INPUT CALCULATIONS

- CURVE NUMBERS
- CURVE NUMBER ADJUSTMENT
- LAG TIME
| SUB BASIN I.D. | AREA (acres) | IMPERVIOUS | COMputed CN | ADJUSTED CN | COMPUTED C100 | LAG (min) | Q100 (cfs) | Q100ACRE | Q100 (cfs) | Q100ACRE | T100 (in/hr) | Q100 | Q100ACRE | T100 | Q100AReLU

SUMMARY.xls
AMENDMENT No. 2
TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY
INTERIM CONDITION CURVE NUMBERS

4/14/96

<table>
<thead>
<tr>
<th>SUB-BASIN LABEL</th>
<th>SUB AREA ONE</th>
<th></th>
<th>SUB AREA TWO</th>
<th></th>
<th>SUB AREA THREE</th>
<th></th>
<th>TOTAL AREA AC.</th>
<th>TOTAL AREA S.M.</th>
<th>WEIGHTED CN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASSUMED LAND USE</td>
<td>ESTIMATED</td>
<td>ASSUMED LAND USE</td>
<td>ESTIMATED</td>
<td>ASSUMED LAND USE</td>
<td>ESTIMATED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERCENT IMPERVIOUS</td>
<td>CN</td>
<td>PERCENT IMPERVIOUS</td>
<td>CN</td>
<td>PERCENT IMPERVIOUS</td>
<td>CN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPN1</td>
<td>1DUAC</td>
<td>20.0</td>
<td>68.0</td>
<td>30.0</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>74.7</td>
<td>164.7</td>
</tr>
<tr>
<td>IPN2</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>146.5</td>
<td></td>
<td>0.0</td>
<td>62.0</td>
<td>146.5</td>
<td>78.3</td>
</tr>
<tr>
<td>IPN3</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>75.1</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>3.2</td>
<td>90.9</td>
</tr>
<tr>
<td>IPN4</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>90.7</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>0.2</td>
<td>27.3</td>
</tr>
<tr>
<td>IPN5</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>27.3</td>
<td></td>
<td>0.0</td>
<td>62.0</td>
<td>93.6</td>
<td>93.6</td>
</tr>
<tr>
<td>IPN6</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>90.5</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>3.5</td>
<td>93.6</td>
</tr>
<tr>
<td>IPN7</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>66.2</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>0.5</td>
<td>66.7</td>
</tr>
<tr>
<td>IPN8</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>89.8</td>
<td></td>
<td>0.0</td>
<td>62.0</td>
<td>93.6</td>
<td>93.6</td>
</tr>
<tr>
<td>IPN9</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>106.5</td>
<td></td>
<td>0.0</td>
<td>62.0</td>
<td>93.6</td>
<td>93.6</td>
</tr>
<tr>
<td>IPN10</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>54.7</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>1.3</td>
<td>85.0</td>
</tr>
<tr>
<td>IPN11</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>54.4</td>
<td></td>
<td>0.0</td>
<td>62.0</td>
<td>84.4</td>
<td>84.4</td>
</tr>
<tr>
<td>IPN12</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>130.9</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>2.6</td>
<td>133.5</td>
</tr>
<tr>
<td>IPN13</td>
<td>PASTURE</td>
<td>0.0</td>
<td>62.0</td>
<td>55.0</td>
<td>M.A. STREET</td>
<td>85.0</td>
<td>93.0</td>
<td>1.3</td>
<td>56.3</td>
</tr>
<tr>
<td>IPN14</td>
<td>4 DUAC</td>
<td>37.0</td>
<td>76.0</td>
<td>26.5</td>
<td>OPEN SPC.</td>
<td>69.0</td>
<td>11.3</td>
<td>3 DUAC 17.0</td>
<td>72.0</td>
</tr>
<tr>
<td>IPN15</td>
<td>YMCA</td>
<td>50.0</td>
<td>84.0</td>
<td>10.0</td>
<td></td>
<td>0.0</td>
<td>69.0</td>
<td>82.3</td>
<td>1296.8</td>
</tr>
</tbody>
</table>

INTERIM SUMMARY
AMENDMENT No. 2 TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY

FULLY DEVELOPED CONDITION LAG TIME ESTIMATE

5/5/98

<table>
<thead>
<tr>
<th>BASIN</th>
<th>OVERLAND FLOW</th>
<th>SWALE OR STREET FLOW</th>
<th>CHANNEL OR S.D. FLOW</th>
<th>TOTAL</th>
<th>TOTAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (ft)</td>
<td>C(10YR)</td>
<td>S (%)</td>
<td>TC(min)</td>
<td>L (ft)</td>
<td>S (%)</td>
</tr>
<tr>
<td>CN1</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>CN2</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>2000</td>
<td>2.5</td>
</tr>
<tr>
<td>CN3</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1100</td>
<td>6</td>
</tr>
<tr>
<td>CS1</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1650</td>
<td>2.5</td>
</tr>
<tr>
<td>CS2</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 SW</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>CS3</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1400</td>
<td>3.2</td>
</tr>
<tr>
<td>CS4</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 ST</td>
<td>800</td>
<td>3</td>
</tr>
<tr>
<td>F1</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>2200</td>
<td>2.3</td>
</tr>
<tr>
<td>F2</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1000</td>
<td>3</td>
</tr>
<tr>
<td>F3</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>2650</td>
<td>3</td>
</tr>
<tr>
<td>F4</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1700</td>
<td>2</td>
</tr>
<tr>
<td>F5</td>
<td>200</td>
<td>0.75</td>
<td>2.8</td>
<td>6.59 SW</td>
<td>1000</td>
<td>3.3</td>
</tr>
<tr>
<td>F6</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 SW</td>
<td>1000</td>
<td>3.9</td>
</tr>
<tr>
<td>F7</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 SW</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td>PM1</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1700</td>
<td>1.5</td>
</tr>
<tr>
<td>PM2</td>
<td>300</td>
<td>0.25</td>
<td>6</td>
<td>15.24 SW</td>
<td>3300</td>
<td>5</td>
</tr>
<tr>
<td>PM3</td>
<td>300</td>
<td>0.25</td>
<td>3.0</td>
<td>19.16 SW</td>
<td>650</td>
<td>6.0</td>
</tr>
<tr>
<td>PM4</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>800</td>
<td>6</td>
</tr>
<tr>
<td>PM5</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1800</td>
<td>5</td>
</tr>
<tr>
<td>PM6</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 SW</td>
<td>400</td>
<td>3</td>
</tr>
<tr>
<td>PM7</td>
<td>300</td>
<td>0.25</td>
<td>9</td>
<td>13.33 SW</td>
<td>4600</td>
<td>2.5</td>
</tr>
<tr>
<td>PM8</td>
<td>300</td>
<td>0.75</td>
<td>5</td>
<td>6.87 ST</td>
<td>1200</td>
<td>5</td>
</tr>
<tr>
<td>PM9</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 ST</td>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>PM10</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 SW</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>PM11</td>
<td>200</td>
<td>0.75</td>
<td>3</td>
<td>6.44 ST</td>
<td>450</td>
<td>4</td>
</tr>
<tr>
<td>PN1</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65 ST</td>
<td>1600</td>
<td>7.0</td>
</tr>
<tr>
<td>PN2</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65 ST</td>
<td>1600</td>
<td>6.0</td>
</tr>
<tr>
<td>PN3</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65 ST</td>
<td>1500</td>
<td>3.0</td>
</tr>
<tr>
<td>PN4</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65 ST</td>
<td>1500</td>
<td>7.0</td>
</tr>
<tr>
<td>PN5</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65 ST</td>
<td>1600</td>
<td>3.0</td>
</tr>
<tr>
<td>PN6</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44 ST</td>
<td>1300</td>
<td>3.0</td>
</tr>
<tr>
<td>PN7</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1500</td>
<td>5.5</td>
</tr>
<tr>
<td>PN8</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65 ST</td>
<td>1600</td>
<td>4</td>
</tr>
</tbody>
</table>
Amendment No. 2 to
Pine Creek Drainage Basin Planning Study

Fully Developed Condition Lag Time Estimate

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>Overland Flow</th>
<th>Swale or Street Flow</th>
<th>Channel or S.D. Flow</th>
<th>Total TC(min)</th>
<th>Total Lag(min)</th>
<th>Total Lag(hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L (ft)</td>
<td>C(10yr)</td>
<td>S (%)</td>
<td>TC(min)</td>
<td>TYPE</td>
<td>L (ft)</td>
</tr>
<tr>
<td>PN0</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65</td>
<td>ST</td>
<td>1400</td>
</tr>
<tr>
<td>PN10</td>
<td>100</td>
<td>0.25</td>
<td>3</td>
<td>11.06</td>
<td>ST</td>
<td>1000</td>
</tr>
<tr>
<td>PN11</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65</td>
<td>ST</td>
<td>1750</td>
</tr>
<tr>
<td>PN12</td>
<td>300</td>
<td>0.25</td>
<td>25</td>
<td>9.52</td>
<td>SW</td>
<td>450</td>
</tr>
<tr>
<td>PN13</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PN14</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65</td>
<td>ST</td>
<td>1100</td>
</tr>
<tr>
<td>PN15</td>
<td>100</td>
<td>0.25</td>
<td>2</td>
<td>12.65</td>
<td>ST</td>
<td>1800</td>
</tr>
<tr>
<td>PS1</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>ST</td>
<td>1700</td>
</tr>
<tr>
<td>PS2</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS3</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>ST</td>
<td>1700</td>
</tr>
<tr>
<td>PS4</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS5</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>SW</td>
<td>1400</td>
</tr>
<tr>
<td>PS6</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS7</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS8</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS9</td>
<td>200</td>
<td>0.75</td>
<td>3.0</td>
<td>6.44</td>
<td>ST</td>
<td>1500</td>
</tr>
<tr>
<td>PS10</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>ST</td>
<td>1200</td>
</tr>
<tr>
<td>PS11</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>ST</td>
<td>1400</td>
</tr>
<tr>
<td>PS12</td>
<td>300</td>
<td>0.75</td>
<td>9.0</td>
<td>13.33</td>
<td>SW</td>
<td>300</td>
</tr>
<tr>
<td>PS13</td>
<td>300</td>
<td>0.25</td>
<td>12.0</td>
<td>12.13</td>
<td>SW</td>
<td>200</td>
</tr>
</tbody>
</table>

Overland Flow (TC=1.87*(1.1-C10)/[(L^0.5)*S^-.33])

Street and Swale Velocity per Mannings Based on a Estimated Average Flow Rate

Channel Velocity per Mannings Based on Approximate Section and Flow Rate

Storm Drain Velocity per Mannings Based on an Estimated Storm Drain Size
AMENDMENT No. 2
TO
PINE CREEK DRAINAGE BASIN PLANNING STUDY

INTERIM CONDITION LAG TIME ESTIMATE

4/10/98

<table>
<thead>
<tr>
<th>BASIN ID</th>
<th>OVERLAND FLOW</th>
<th>SHALLOW CONCENTRATED FLOW</th>
<th>CHANNEL FLOW</th>
<th>TOTAL LAG(min)</th>
<th>TOTAL LAG(hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (ft)</td>
<td>C(10YR)</td>
<td>S (%)</td>
<td>TC(min)</td>
<td>L (ft)</td>
<td>S(%)</td>
</tr>
<tr>
<td>IPN1</td>
<td>300</td>
<td>0.25</td>
<td>10.0</td>
<td>12.88</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPN2</td>
<td>300</td>
<td>0.25</td>
<td>4.7</td>
<td>16.52</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPN3</td>
<td>300</td>
<td>0.25</td>
<td>4.7</td>
<td>16.52</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPN4</td>
<td>300</td>
<td>0.25</td>
<td>6.0</td>
<td>15.24</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPN5</td>
<td>300</td>
<td>0.25</td>
<td>14.0</td>
<td>11.52</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS1</td>
<td>300</td>
<td>0.25</td>
<td>7.0</td>
<td>14.49</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS2</td>
<td>300</td>
<td>0.25</td>
<td>2.7</td>
<td>19.84</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS3</td>
<td>300</td>
<td>0.25</td>
<td>13.6</td>
<td>11.63</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS4</td>
<td>300</td>
<td>0.25</td>
<td>4.7</td>
<td>16.52</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS5</td>
<td>300</td>
<td>0.25</td>
<td>3.3</td>
<td>18.57</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS6</td>
<td>300</td>
<td>0.25</td>
<td>5.3</td>
<td>15.88</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS7</td>
<td>300</td>
<td>0.25</td>
<td>3.5</td>
<td>18.21</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS8</td>
<td>300</td>
<td>0.25</td>
<td>3.7</td>
<td>17.88</td>
<td>GRASS CHAN</td>
</tr>
<tr>
<td>IPS9</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>STREET</td>
</tr>
<tr>
<td>IPS10</td>
<td>100</td>
<td>0.25</td>
<td>2.0</td>
<td>12.65</td>
<td>STREET</td>
</tr>
</tbody>
</table>

NOTE: LAG TIMES IN SUB-BASINS NOT INCLUDED IN THE TABLE ABOVE ARE NOT CHANGED FROM THE FULLY DEVELOPED CONDITION.
HYDROLOGIC MODEL (HEC-1) OUTPUT
FULLY DEVELOPED CONDITION
- 5-YEAR STORM
- 100-YEAR STORM

INTERIM CONDITION
- 5-YEAR STORM
- 100-YEAR STORM
HEC-1 MODEL OUTPUT

FULLY DEVELOPED CONDITION

* 5-YEAR STORM
FLOOD HYDROGRAPH PACKAGE (HEC-1)
MAY 1991
VERSION 4.0.1E
RUN DATE 08/05/1998 TIME 17:41:14

X X XXXXXX XXXX X
X X X X X XX
X X X X X
XXXXXXXX XXXX X XXX
X X X X X
X X X X X X
X X XXXXXX XXXX XXX

:::
::: Full Microcomputer Implementation
::: by
::: Haestad Methods, Inc.
:::
:::

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC10B, AND HEC1KW.

HEC-1 INPUT

LINE
ID........1........2........3........4........5........6........7........8........9........10

1 ID PINE CREEK DRAINAGE BASIN - 24HR, FULL DEVELOPED CONDITION (TYPE IIA5 YEAR)
2 ID FILE:PCDBPS05.DAT
3 ID FULLY DEVELOPED CONDITION MODEL
4 ID 998 REVISION
5 ID NOTE: THE DIVERSION ROUTINES WERE REMOVED FROM THE MODEL FOR THE 5 YR STORM
6 ID NOTE: THE OUTFLOW CURVE FOR THE SUMMER FIELD DETENTION POND WAS MODIFIED
7 ID SLIGHTLY TO ALLOW THE 5 YR MODEL TO RUN.
8 ID CN VALUES HAVE BEEN ADJUSTED TO PRODUCE PEAK 100 YEAR FLOW RATES SIMILAR TO
9 ID 100 YEAR FLOW RATES PRODUCED BY RATIONAL METHOD.
10 ID **
11 ID BEGIN CALCULATIONS IN THE PINE CREEK NORTH FORK WATERSHED
12 ID **

* FREE ***

*DIAGRAM

IT 3 0 0 300
IO 5

15 KK SB-PN1
16 KM COMPUTE HYDROGRAPH FOR BASIN PN1
17 BA .164
18 IN 15
19 PB 2.6
20 PC 0000 0.0005 0.0015 0.0030 0.0065 0.0100 0.0120 0.0143
21 PC .0165 .0188 .0210 .0233 .0255 .0278 .0320 .0390 .0460 .0530
22 PC .0600 .0750 .1000 .1400 .1700 .2100 .2500 .2900 .3300 .3700
23 PC .8000 .8100 .8200 .8300 .8500 .8700 .8700 .8800 .8900 .9000
24 PC .8900 .9013 .9050 .9083 .9115 .9148 .9180 .9210 .9240 .9270
25 PC .9300 .9325 .9350 .9375 .9400 .9425 .9450 .9475 .9500 .9525
26 PC .9550 .9575 .9600 .9625 .9650 .9675 .9700 .9725 .9750 .9775
27 PC .9800 .9813 .9825 .9838 .9850 .9863 .9875 .9888 .9900 .9913
28 PC .9925 .9938 .9950 .9963 .9975 .9988 1.000
30 LS 0 80.2
31 UD .188

32 KK SB-PN2
33 KM COMPUTE HYDROGRAPH FOR BASIN PN2
34 BA .149
35 LS 0 79
36 UD .192

37 KK RT-PN2
38 KM ROUTE FLOW FROM PN2 TO AP1
39 RD 1000 .03 .013 CIRC 4.5

40 KK AP1
41 KM COMBINE THE FLOW FROM BASIN PN1 TO THE ROUTED FLOW FROM BASIN PN2 AT AP1
42 NC 2

43 KK RT-AP1
44 KM ROUTE AP1 TO AP2
45 RD 2600 .033 .013 CIRC 6
HEC-1 INPUT

LINE

ID........1........2........3........4........5........6........7........8........9........10

46 KK SB-PN3
47 KM COMPUTE HYDROGRAPH FOR BASIN PN3
48 BA .083
49 LS 0 85.8
50 UD .196

51 KK AP2
52 KM COMBINE ROUTED FLOW FROM AP1 WITH FLOW FROM BASIN PN3
53 HC 2

54 KK RT-AP2
55 KM ROUTE FLOW FROM AP2 TO AP3
56 RD 800 .025 .013 CIRC 7

57 KK SB-PN4
58 KM COMPUTE HYDROGRAPH FOR BASIN PN4
59 BA .114
60 LS 0 78.5
61 UD .105

62 KK RT-PN4
63 KM ROUTE FLOW FROM BASIN PN4 TO AP3
64 RD 1000 .040 .013 CIRC 4

65 KK SB-PN5
66 KM COMPUTE HYDROGRAPH FOR BASIN PN5
67 BA .074
68 LS 0 86.2
69 UD .175

70 KK AP3
71 KM COMBINE ROUTED FLOW RT-PN4 WITH ROUTED FLOW RT-AP2 AND FLOW FROM BASIN PN5
72 HC 3

73 KK RT-AP3
74 KM ROUTE FLOW FROM AP3 TO DETENTION FACILITY "G"
75 RD 1100 .025 0.013 CIRC 8.5

76 KK SB-PN6
77 KM COMPUTE HYDROGRAPH FOR BASIN PN6
78 BA .146
79 LS 0 95.0
80 UD .127

81 KK APD6
82 KM COMBINE ROUTED FLOW FROM AP3 WITH FLOW FROM BASIN PN6 AT REGIONAL DETENTION
83 KM FACILITY "G"
84 HC 2
HEC-1 INPUT

LINE ID......8........9........10

85 KK RR-DFF
86 KM ROUTE FLOW THROUGH A REGIONAL DETENTION FACILITY. ASSUME A 48" DIA OUTLET
87 KM WITH INVERT AT EL. 59. OUTLET Q ESTIMATED WITH BUREAU OF PUBLIC ROADS
88 KM NOMOGRAPH FOR INLET CONTROL OF CULVERTS. VOLUME BASED ON CONCEPTUAL
89 KM GRADING PLAN.
90 KO 3 1 100
91 RS 1 STOR 0
92 SV 0 .1 2.8 8.0 14.1 20.9 28.4 36.6 45.5 55.1
93 SV 65.3 76.3 88.2
94 SE 59 60 62 64 66 68 70 72 74 76
95 SE 78 80 82
96 SQ 0 10 47 93 130 160 180 203 222 240
97 SQ 262 280 295

98 KK RT-DFF
99 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM POWERS BLVD.
100 KM 1000 FEET WEST TO DETENTION FACILITY "F"
101 RD 1800 .023 .045 TRAP 15 3
102 KK SB-PN7
103 KM COMPUTE HYDROGRAPH FOR BASIN PN7
104 BA .078
105 LS 0 74.6
106 UD .165
107 KK SB-PN8
108 KM COMPUTE HYDROGRAPH FOR BASIN PN8
109 BA .113
110 LS 0 80.9
111 UD .176
112 KK APOFF
113 KM COMBINE ROUTED FLOW RT-DFF AND FLOW FROM BASINS PN7 AND PN8 AT REGIONAL
114 KM DETENTION FACILITY "F"
115 HC 3
116 KK RR-DFF
117 KM ROUTE FLOW THRU A REGIONAL DETENTION FACILITY. ASSUME A 48 DIA OUTLET WITH
118 KM THE INVERT DEPRESSED 2' BELOW POND INVERT. OUTLET Q ESTIMATED WITH BUREAU
119 KM OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS
120 KO 3 1 100
121 RS 1 STOR 0
122 SV 0 0 0.1 0.7 1.5 4.4 7.8 11.7 16.1 21.0
123 SV 26.4
124 SE 90 92 94 96 98 100 102 104 106 108
125 SE 110
126 SQ 0 22 70 112 143 170 190 210 230 250
127 SQ 265
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10

128 KK RT-OFF
129 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM DETENTION
130 KM FACILITY "E" AT THE COLLECTOR STREET CROSSING TO AP-4 AT THE WEST SIDE OF
131 KM BASINS PN9 AND PN10
132 RD 1600 .02 .045 TRAP 20 3

133 KK SB-PN9
134 KM COMPUTE HYDROGRAPH FOR BASIN PN9
135 BA .036
136 LS 0 72.8
137 UD .170

138 KK SB-PN10
139 KM COMPUTE HYDROGRAPH FOR BASIN PN10
140 BA .043
141 LS 0 72.7
142 UD .141

143 KK AP4
144 KM COMBINE ROUTED FLOW RT-OFF WITH FLOW FROM BASINS PN9 AND PN10
145 HC 3

146 KK RT-AP4
147 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP4
148 KM TO DETENTION FACILITY "E" AT THE COLLECTOR STREET CROSSING
149 RD 1400 .032 .045 TRAP 20 3

150 KK SB-PN11
151 KM COMPUTE HYDROGRAPH FOR BASIN PN11
152 BA 0.079
153 LS 0 76.7
154 UD .169

155 KK SB-PN12
156 KM COMPUTE HYDROGRAPH FOR BASIN PN12
157 BA 0.059
158 LS 0 68.2
159 UD .129

160 KK SB-PN13
161 KM COMPUTE HYDROGRAPH FOR BASIN PN13
162 BA 0.127
163 LS 0 74
164 UD .195

165 KK AP0DFE
166 KM COMBINE ROUTED FLOW RT-AP4 WITH FLOW FROM BASINS PN11, PN12, AND PN13
167 KM AT REGIONAL DETENTION FACILITY "E"
168 HC 4
HEC-1 INPUT

LINE

ID........1........2........3........4........5........6........7........8........9........10

169 KK RR-DFE
170 KM NOTE: THE INPUT POND VOLUME REFLECTS THE DESIGN POND VOLUME ON 7-23-98
171 KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 54" DIA OUTLET WITH
172 KM THE INVERT DEPRESSED 2' BELOW POND INVERT (INV EL=84). OUTLET Q ESTIMATED
173 KM WITH BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS
174 KM DISCHARGE ABOVE EL 100.3 INCLUDES FLOW OVER EMERGENCY SPILLWAY
175 KM SCALE 1
176 KO 3 1
177 RS 1 STOR 0
178 SV 0 0 1.25 3.91 6.93 10.31 14.07 18.24 22.83 27.87
179 SE 784 786 788 790 792 794 796 798 800 802
180 SQ 0 25 80 136 173 210 240 263 280 1431

181 KK RT-DFE
182 KM ROUTE THE OUTFLOW FROM DETENTION FACILITY "G" IN A STORM DRAIN TO AP-5
183 RD 1800 .025 .013 CIRC 4.5
184 KK SB-PN14
185 KM COMPUTE HYDROGRAPH FOR BASIN PN14
186 BA .027
187 LS 0 74.3
188 UD .157
189 KK RT-PN14
190 KM ROUTE FLOW FROM BASIN PN14 IN A STORM DRAIN TO AP5
191 RD 1600 .055 .013 CIRC 2
192 KK SB-PN15
193 KM COMPUTE HYDROGRAPH FOR BASIN PN15
194 BA .074
195 LS 0 72.7
196 UD .186
197 KK AP5
198 KM COMBINE ROUTED FLOW RT-PN14 TO FLOW FROM BASIN PN15
199 HC 3

200 KK RT-AP5
201 KM ROUTE THE FLOW AT AP5 TO AP5A AT THE CONFLUENCE OF THE FLOWS FROM THE
202 KM NORTH AND SOUTH FORKS OF PINE CREEK
203 RD 400 .025 .013 CIRC 5
204 KM **
205 KM **** BEGIN CALCULATIONS FOR THE SOUTH FORK OF PINE CREEK WATERSHED ****
206 KM **

207 KK SB-PS1
208 KM COMPUTE HYDROGRAPH FOR BASIN PS1
209 BA .150
210 LS 0 78.4
211 UD .205
HEC-1 INPUT

LINE

ID........1........2........3........4........5........6........7........8........9........10

212 KK RT-PS1
213 KM ROUTE FLOW FROM BASIN PS1 TO REGIONAL DETENTION FACILITY "C"
214 RD 2100 .03 .013 CIRC 4.5

215 KK SB-PS2
216 KM COMPUTE HYDROGRAPH FOR BASIN PS2
217 BA .154
218 LS 0 85.2
219 UD .188

220 KK SB-PS3
221 KM COMPUTE HYDROGRAPH FOR BASIN PS3
222 BA .162
223 LS 0 84.8
224 UD .205

225 KK APDFD
226 KM COMBINE ROUTED FLOW RT-PS1 TO FLOW FROM BASINS PS2 AND PS3
227 HC 3

228 KK RR-DFD
229 KM ROUTE FLOW THRU A DETENTION FACILITY
230 KM ASSUME BOTTOM TO BE 240' WIDE X 590' LONG W 4:1 SIDE SLOPES
231 KM ASSUME A 36 DIA OUTLET WITH INVERT AT POND INVERT.
232 KM OUTLET Q ESTIMATED WITH ORIFICE EQUATION ASSUMING c=0.60
233 KM AND DOWNSTREAM STORM DRAIN IN NON PRESSURE FLOW
234 KM 2,2,100
235 RS 1 STOR 0
236 KD 3 1 100
237 SV 0 6.8 14.3 22.4 31.1 40.6 50.8 61.8
238 SE 100 102 104 106 108 110 112 114
239 SQ 0 18 54 72 87 99 110 120

240 KK RT-DFD
241 KM ROUTE FLOW FROM DFD TO AP-6 AT POWERS BLVD.
242 RD 1000 .025 .013 CIRC 3

243 KK SB-PS4
244 KM COMPUTE HYDROGRAPH FOR BASIN PS4
245 BA .054
246 LS 0 93.2
247 UD .134

248 KK SB-PS5
249 KM COMPUTE HYDROGRAPH FOR BASIN PS5
250 BA .066
251 LS 0 98.0
252 UD .135
HEC-1 INPUT

253 KK AP6
254 KM COMBINE ROUTED FLOW RT-DID WITH FLOW FROM BASINS PS4 AND PS5
255 HC 3

256 KK RT-AP6
257 KM ROUTE FLOW FROM AP6 TO AP7 AT THE BRIARGATE BLVD./AUSTIN BLUFFS PKWY.
258 KM INTERSECTION
259 RD 2800 .025 .013 CIRC 5.5

260 KK SB-PS6
261 KM COMPUTE HYDROGRAPH FOR BASIN PS6
262 BA .075
263 LS 0 86.5
264 UD .123

265 KK AP-7
266 KM COMBINE ROUTED FLOW RT-AP6 TO FLOW FROM BASIN PS6
267 HC 2

268 KK SB-PS7
269 KM COMPUTE HYDROGRAPH FOR BASIN PS7
270 BA .089
271 LS 0 98.0
272 UD .119

273 KK AP7A
274 KM COMBINE FLOW AT AP-7 TO FLOW FROM BASIN PS7
275 HC 2

276 KK RT-AP7A
277 KM ROUTE FLOW FROM AP7A TO AP8 AT THE BRIARGATE PARKWAY AND UNION BLVD.
278 KM INTERSECTION
279 RD 2100 .017 .013 CIRC 7.5

280 KK SB-PS8
281 KM COMPUTE HYDROGRAPH FOR BASIN PS8
282 BA .122
283 LS 0 86.0
284 UD .127

285 KK AP8
286 KM COMBINE ROUTED FLOW RT-AP7 TO FLOW FROM BASIN PS8 AT AP8
287 HC 2

288 KK SB-PS9
289 KM COMPUTE HYDROGRAPH FOR BASIN PS9
290 BA .128
291 LS 0 95.3
292 UD .130
293 KK AP9
294 KM COMBINE FLOW AT AP-9 TO FLOW FROM BASIN PS9 AT AP9
295 HC 2

296 KK SB-PS10
297 KM COMPUTE HYDROGRAPH FOR BASIN PS10
298 BA .038
299 LS 0 72.9
300 UD .160

301 KK APDFC
302 KM COMBINE FLOW AT AP-9 TO FLOW FROM SB-PS10 IN REGIONAL DETENTION FACILITY "C"
303 KM THIS IS THE TOTAL INFLOW TO DETENTION FACILITY "C"
304 HC 2

305 KK RR-DFC
306 KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 48 DIA OUTLET WITH THE
307 KM INVERT AT EL 62. CULVERT 0 ESTIMATED WITH BUREAU OF PUBLIC ROADS NOMOGRAPH
308 KM FOR INLET CONTROL OF CULVERTS, SCALE 1.
309 KD 3 1 100
310 RS 1 STOR 0
311 SV 0 2.73 9.72 18.56 28.03 38.15 48.95 60.45 72.75 85.85
312 SV 99.66
313 SE 62 64 66 68 70 72 74 76 78 80
314 SE 82
315 SQ 0 23 70 110 140 160 190 215 232 245
316 SQ 258

317 KK RT-DFC
318 KM ROUTE OUTFLOW FROM POND "C" WEST DOWN A STORM DRAIN IN BRIARGATE PKWY.
319 KM TO AP10 AT DETENTION FACILITY "B"
320 RD 2400 .035 .013 CIRC 4

321 KK SB-PS11
322 KM COMPUTE HYDROGRAPH FOR BASIN PS11
323 BA .056
324 LS 0 80.3
325 UD .172

326 KK AP10
327 KM COMBINE ROUTED FLOW RT-DFC TO FLOW FROM SB-PS11
328 HC 2

329 KK SB-PS12
330 KM COMPUTE HYDROGRAPH FOR BASIN PS12
331 BA .153
332 LS 0 69.0
333 UD .233
HEC-1 INPUT

LINE

ID........1........2........3........4........5........6........7........8........9........10

334 KK APDFB
335 KM COMBINE FLOW AT AP10 TO FLOW FROM BASIN PS12
336 HC 2

337 KK RR-DFB
338 KM ROUTE FLOW THROUGH REGIONAL DETENTION POND "B"
339 KM THIS VOLUME REFLECTS THE DESIGN VOLUME PER PRELIMINARY PLANS ON 7-23-98
340 KM WITH 54" DIA OUTLET SET AT INVERT ELEV. 70.2. OUTLET Q ESTIMATED WITH
341 KM BUREAU OF PUBLIC ROADS NOMO GRAPH FOR INLET CONTROL OF CONCRETE PIPE
342 KM DISCHARGE ABOVE 87.6 INCLUDES FLOW OVER 80' LONG EMERGENCY SPILLWAY
343 KM SCALE 1
344 KO 3 1
345 RS 1 STOR 0
346 SV 0 0.06 1.17 3.30 5.82 8.73 12.07 15.85 20.07 23.60
347 SV 24.76 29.96
348 SE 71.2 72.0 74 76 78 80 82 84 86 87.6
349 SE 88 90
350 SQ 0 22 73 130 169 202 236 260 285 301
351 SQ 371 1222

352 KK RT-DFB
353 KM ROUTE FLOW 1000 LF NORTHWEST IN A STORM DRAIN FROM DETENTION FACILITY "B"
354 KM TO AP-11
355 RD 1000 .021 .013 CIRC 4.5

356 KK SB-PS13
357 KM COMPUTE HYDROGRAPH FOR BASIN PS13
358 BA .065
359 LS 0 74.1
360 UD .149

361 KK AP11
362 KM COMBINE ROUTED FLOW RT-DFB TO FLOW FROM BASIN PS13 AT AP11
363 HC 2

364 KK RT-AP11
365 KM ROUTE FLOW 600 LF NORTHWEST IN A STORM DRAIN FROM AP11 TO AP5A (THE
366 KM CONFLUENCE OF FLOWS FROM THE NORTH AND SOUTH FORKS OF PINE CREEK)
367 RD 600 .021 .013 CIRC 5

368 KK AP5A
369 KM COMBINE ROUTED FLOW AP5 (FLOW FROM THE NORTH FORK OF PINE CREEK) TO ROUTED
370 KM FLOW RT-AP11 (FLOW FROM THE SOUTH FORK OF PINE CREEK)
371 HC 2

372 KK RT-AP5A
373 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL 1300 FEET DOWN THE CHANNEL FROM
374 KM AP5A NEAR THE HISTORIC CONFLUENCE OF PINE CREEK TO AP12 AT THE CONFLUENCE
375 KM OF THE MAIN CHANNEL AND THE LEXINGTON DRIVE STORM DRAIN OUTFALL. USE AN
376 KM APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
377 RD 1300 .023 .045 TRAP 50 2
HEC-1 INPUT

LINE

ID.......1.......2.......3.......4.......5.......6.......7.......8.......9.......10

378 KK SB-PM1
379 KM COMPUTE HYDROGRAPH FOR BASIN PM1
380 BA .054
381 LS 0 78.5
382 UD .203

383 KK RT-PM1
384 KM ROUTE THE FLOW FROM BASIN PM1 1200 LF NORTH IN THE LEXINGTON DR. S.D. TO
385 KM PINE CREEK MAIN CHANNEL.
386 RD 1200 .08 .013 CIR 3.5

387 KK SB-PM2
388 KM COMPUTE HYDROGRAPH FOR BASIN PM2, AN AREA OF THE GOLF COURSE
389 BA .154
390 LS 0 66.0
391 UD .310

392 KK SB-PM3
393 KM COMPUTE HYDROGRAPH FOR BASIN PM3
394 BA .067
395 LS 0 73.5
396 UD .248

397 KK AP12
398 KM COMBINE ROUTED FLOW RT-PM1 WITH THE ROUTED FLOW IN PINE CREEK MAIN CHANNEL
399 KM AND THE FLOW FROM BASINS PM2 AND PM3
400 HC 4

401 KK RT-AP12
402 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP12 NEAR THE
403 KM OUTFALL OF LEXINGTON DRIVE STORM DRAIN TO THE CROSSING AT CHAPEL HILLS DRIVE
404 KM USE AN APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
405 RD 1600 .018 .045 TRAP 30 2

406 KK SB-PM4
407 KM COMPUTE HYDROGRAPH FOR BASIN PM4
408 BA .111
409 LS 0 71.9
410 UD .170

411 KK AP13
412 KM COMBINE FLOW FROM BASIN PM4 TO THE ROUTED FLOW RT-AP12 IN PINE CREEK MAIN
413 KM CHANNEL ON THE EAST SIDE OF THE CHAPEL HILLS DRIVE CROSSING
414 HC 2
415 KM ***
416 KM ***
417 KM ***

418 KK SB-CS1
419 KM COMPUTE HYDROGRAPH FOR BASIN CS1
420 BA .053
421 LS 0 73.6
422 UD .181
HEC-1 INPUT

LINE ID.....1....2....3....4....5....6....7....8....9....10

423 KK RT-CS1
424 KM ROUTE FLOW 1300 LF WEST IN DYNAMIC DR. ASSUME BULK OF FLOW IS ON THE SURFACE
425 RD 1300 .021 .013 TRAP 32 .01

426 KK SB-CS2
427 KM COMPUTE HYDROGRAPH FOR BASIN CS1
428 BA .070
429 LS 0 98.0
430 UD .101

431 KKR-DFCS2
432 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION OF 1.6cfs
433 KM /ACRE FROM THE LI/O PROPERTY AS ASSUMED IN THE MDDP FOR BRIARGATE BUSINESS
434 KM CAMPUS. BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
435 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE AT
436 KM THE POND TO REFLECT POTENTIAL FREE DISCHARGE FROM A PORTION OF THE SUBBASIN
437 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 37ac=60 cfs
438 RS 1 STOR 0
439 SV 0 .001 6 10
440 SE 100 102 104 106
441 SQ 0 194 194 194

442 KK AP14
443 KM COMBINE ROUTED FLOW RT-CS1 TO CONTROLLED FLOW FROM BASIN CS2 AT THE
444 KM INTERSECTION OF CHAPEL HILLS DR. AND DYNAMIC DR.
445 HC 2

446 KK RT-AP14
447 KM ROUTE FLOW 1100 LF NORTH IN THE CHAPEL HILLS DR. S.D. TO BRIARGATE PKWY.
448 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
449 KM OF THE STORM DRAIN BETWEEN DYNAMIC DRIVE AND BRIARGATE PARKWAY. SOME OF
450 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE.
451 RD 1100 .02 .013 CIR 4

452 KK SB-CS3
453 KM COMPUTE HYDROGRAPH FOR BASIN CH3
454 BA .053
455 LS 0 84.8
456 UD .177

457 KKR-DFCS3
458 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION REDUCING
459 KM THE PEAK 100YR FLOW RATE FROM THE 9 ACRES OF THE BASIN THAT ARE DESIGNATED
460 KM AS LI/O USE AS ASSUMED IN MDDP FOR BRIARGATE BUSINESS CAMPUS.
461 KM BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
462 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE AT
463 KM THE POND TO REFLECT FREE DISCHARGE FROM A PORTION OF THE SUB BASIN.
464 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 9=14 cfs
465 RS 1 STOR 0
466 SV 0 .001 6 10
467 SE 100 102 104 106
468 SQ 0 123 123 123
LINE ID........1........2........3........4........5........6........7........8........9........10

469 KK AP15
470 KM COMBINE ROUTED FLOW RT-AP14 WITH CONTROLLED FLOW FROM BASIN CS3 AT THE
471 KM INTERSECTION OF CHAPEL HILLS DR. AND BRIARGATE PARKWAY. NOTE A SMALL PORTION
472 KM OF BASIN CS3 IS LOCATED DOWNSTREAM OF THIS POINT. FOR THIS MODELING PURPOSE
473 KM THIS IS CONSIDERED INSIGNIFICANT.
474 HC 2

475 KK RT-AP15
476 KM ROUTE FLOW 1400 LF NORTH IN THE CHAPEL HILLS DR. S.D.
477 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
478 KM OF THE STORM DRAIN BETWEEN BRIARGATE PARKWAY AND PINE CREEK. SOME OF
479 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE. A SMALL PORTION OF
480 KM THE SURFACE FLOW MAY BE DIVERTED DOWN BRIARGATE PARKWAY, BUT FOR THE PURPOSE
481 KM OF THIS ANALYSIS ALL OF THE FLOW FROM THE CHAPEL HILLS DRIVE/BRIARGATE PKY.
482 KM INTERSECTION IS ASSUMED TO REACH PINE CREEK AT CHAPEL HILLS DRIVE.
483 RD 1400 .045 .013 CIR 4.5

484 KK SB-CS4
485 KM COMPUTE HYDROGRAPH FOR BASIN CS4
486 BA .053
487 LS 0 95.5
488 UD .101

489 KK RR-DFVC
490 KM ROUTE FLOW THRU THE PROPOSED VILLAGE CENTER DETENTION FACILITY
491 KM POND GRADING PER THE PRELIMINARY GRADING SHOWN IN THE MDP FOR VILLAGE
492 KM CENTER. DISCHARGE ASSUMES USE OF THE EXISTING 10" DIAMETER STUB.
493 KM WITH THE INVERT SET AT ELEVATION 73. BUREAU OF PUBLIC ROADS NOMOGRAPH
494 KM USED TO ESTIMATE OUTFLOW RATES ASSUMING INLET CONTROL.
495 RS 1 STOR 0
496 SV 000 .032 1.67 3.23 5.00 7.00
497 SE 73 74 76 78 80 82
498 SQ 0 3 13 17 20 22

499 KK AP16
500 KM COMBINE ROUTED FLOW RT-AP15 WITH THE DISCHARGE FROM THE VILLAGE CENTER POND
501 HC 2

502 KK RT-AP16
503 KM ROUTE THE FLOW IN THE CHAPEL HILLS DRIVE STORM DRAIN FROM AP16 TO AP19 IN
504 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
505 KM CROSSING
506 RD 300 .03 .013 CIR 4.5
507 KM ***
508 KM ***BEGIN CALCULATION OF THE NORTH CHAPEL HILLS DR. STORM DRAIN WATERSHED***
509 KM ***

510 KK SB-CN1
511 KM COMPUTE RUNOFF FROM BASIN CN1 THE WATERSHED CONTRIBUTING TO THE PARK SITE AT
512 KM CHAPEL HILLS DRIVE POND (REGIONAL DETENTION FACILITY "A").
513 BA .145
514 LS 0 76.8
515 UD .190
HEC-1 INPUT

LINE

KK RR-DFA

KM ROUTE THE FLOW FROM CN1 THROUGH THE PROPOSED DETENTION POND AT THE PARK

KM SITE AT CHAPEL HILLS DRIVE. STAGE STORAGE CURVE PER THE 12/22/97 GRADING PLAN

KM DISCHARGE CURVE REFLECTS 12" DIAMETER OUTLET PIPE CONTROL FOR NORMAL DISCHARG

KM AND A 100' LONG EMERGENCY SPILLWAY SET AT ELEVATION 6805.5

KO 3.1 100

RS 1 STOR 0

SV 0 .01 .22 .99 1.95 2.80 4.25 5.31 6.51 11.64

SV 15.36

SQ 2.35 2.56 3.00 3.73 4.35 4.75 5.36 5.50 8.39 9.01

SQ 279

SE 6796.6 6797.0 6798.0 6800.0 6802.0 6803.5 6803.51 6804 6804.1 6805.5

SE 6806.5

KK RT-DFA

KM ROUTE OUTFLOW FROM REGIONAL DETENTION POND "A" DOWN THE CHAPEL HILLS STORM

KM DRAIN FROM LEXINGTON DRIVE TO TAEELAKE DRIVE

RD 950 .04 .013 CIRC 1.5

KK SB-CN2

KM COMPUTE RUNOFF FROM BASIN CN2

BA .078

LS 0 75.5

UD .214

KK AP17

KM COMBINE ROUTED FLOW RT-DFA AND FLOW FROM BASIN CN2 AT THE INTERSECTION OF

KM CHAPEL HILLS DRIVE AND TAEELAKE DRIVE

HC 2

KK RT-AP17

KM ROUTE FLOW AT AP17 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO MULLIGAN DR.

RD 1400 .05 .013 CIRC 3.5

KK SB-CN3

KM COMPUTE RUNOFF FROM BASIN CN3

BA .043

LS 0 80.0

UD .157

KK AP18

KM COMBINE ROUTED FLOW RT-AP17 TO FLOW FROM BASIN CN3 AT INTERSECTION OF CHAPEL

KM HILLS DR. AND MULLIGAN DR.

HC 2

KK RT-AP18

KM ROUTE FLOW AT AP18 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO AP19 IN THE

KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE

KM CROSSING. NOTE A SMALL PORTION OF BASIN CN3 IS LOCATED SOUTH OF AP18. THIS

KM IS CONSIDERED INSIGNIFICANT FOR THE PURPOSE OF THIS ANALYSIS.

RD 600 .04 .013 CIRC 3.5
LINE ID 1 2 3 4 5 6 7 8 9 10

560 KK AP19
561 KM COMBINE ROUTED FLOW RT-AP18 FROM THE NORTH CHAPEL HILLS DR. STORM DRAIN
562 KM WITH THE ROUTED FLOW RT-AP16 FROM THE SOUTH CHAPEL HILLS DRIVE STORM DRAIN
563 KM AND THE FLOW IN PINE CREEK MAIN CHANNEL (AP13) AT THE WEST SIDE OF THE CHAPEL
564 KM HILLS DRIVE CROSSING. FLOW THAT IS TAKEN INTO THE PINE CREEK CHANNEL FORM THE
565 KM STREET AT THIS POINT HAS BEEN ACCOUNTED FOR IN BASINS GN3 AND GS3. THIS WAS
566 KM DONE TO REDUCE THE COMPLEXITY OF THE MODEL.
567 HC 3

568 KK RT-AP19
569 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL FROM AP19 AT THE CHAPEL HILLS DRIVE
570 KM CROSSING TO AP20 AT REGIONAL DETENTION FACILITY 1 AT BRIARGATE PARKWAY AND
571 KM HIGHWAY 83. USE AVERAGE SLOPES AND APPROXIMATE CROSS SECTIONS FOR ROUTING.
572 RD 750 .035 .045 TRAP 30 2
573 RD 1000 .025 .045 TRAP 120 2
574 RD 1400 .026 .045 TRAP 60 2

575 KK SB-PM5
576 KM COMPUTE HYDROGRAPH FOR BASIN PM5
577 BA .183
578 LS 0 70.0
579 UD .185

580 KK AP20
581 KM COMBINE FLOW FROM BASIN PM6 WITH THE ROUTED FLOW IN PINE CREEK
582 HC 2

583 KK SB-PM6
584 KM COMPUTE HYDROGRAPH FOR PM6 THE AREA BETWEEN CHAPEL HILLS DR. AND DETENTION
585 KM FACILITY 1 BOUNDED BY THE GOLF COURSE AND BRIARGATE PARKWAY. NOTE: THE MDP
586 KM FOR BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN THIS SUBBASIN. FOR THE
587 KM PURPOSE OF THIS ANALYSIS NO DETENTION IS ASSUMED TO ALLOW THE DEVELOPER THE
588 KM OPTION OF CONSTRUCTING LARGER CONVEYANCE FACILITIES TO DETENTION FACILITY
589 KM NO. 1 AND ALLOWING FREE DISCHARGE FROM THE BASIN.
590 BA .088
591 LS 0 98
592 UD .110

593 KK AP21
594 KM COMBINE FLOW FROM PM6 WITH THE FLOW IN PINE CREEK AT AP21 FOR THE TOTAL FLOW
595 KM IN PINE CREEK CHANNEL AS IT ENTERS DETENTION FACILITY No 1
596 HC 2

597 KK SB-PM7
598 KM COMPUTE HYDROGRAPH FOR BASIN PM7 THE AREA NORTH OF DETENTION FACILITY 1
599 KM NOTE: THE MDP FOR THE BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN
600 KM THE NON RESIDENTIAL PORTIONS OF THIS AREA. FOR THE PURPOSE OF THIS ANALYSIS
601 KM FREE DISCHARGE FROM THE BASIN IS ASSUMED. THE RESIDENTIAL PORTION OF THE
602 KM BASIN LOCATED OUTSIDE THE CITY LIMITS IS ASSUMED TO BE FULLY DEVELOPED
603 KM AS 1 DU PER ACRE RESIDENTIAL.
604 BA .138
605 LS 0 76.3
606 UD .353
607 KM ********************

HEC-1 INPUT

PAGE 15

LINE ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

608 KM ****BEGIN CALCULATIONS FOR THE FOCUS ON THE FAMILY STORM DRAIN WATERSHED****

609 KM **

610 KK SB-F1
611 KM COMPUTE HYDROGRAPH FOR BASIN F1
612 BA .119
613 LS 0 78.3
614 UD .208

615 KK RT-F1P
616 KM ROUTE FLOW IN THE STORM DRAIN 1300 LF WEST FROM THE SAG PT. IN LEXINGTON
617 KM DRIVE TO SUMMER FIELD POND
618 RD 1300 .036 .013 CIRC 3

619 KK SB-F2
620 KM COMPUTE HYDROGRAPH FOR BASIN F2
621 BA .039
622 LS 0 74
623 UD .171

624 KK AP-DFS
625 KM COMBINE ROUTED FLOW RT-F1P WITH FLOW FROM F2 AT THE SUMMER
626 KM FIELD POND. THIS IS THE TOTAL FLOW TO THE POND
627 HC 2

628 KK RR-DFS
629 KM ROUTE THE FLOW AT AP-DFS THROUGH THE SUMMER FIELD DETENTION BASIN.
630 KM THE INFLOW/OUTFLOW S.D. FOR THIS FACILITY IS BURIED BELOW THE POND BOTTOM.
631 KM THE POND FILLS WHEN THE CAPACITY OF THE DOWNSTREAM REACH OF S.D. IS
632 KM EXCEEDED. THIS CONFIGURATION PRESENTS A COMPLEX HYDRAULIC PROBLEM. IT IS
633 KM ASSUMED THAT UNTIL INFLOW >120cfs FLOW WILL PASS THROUGH THE STORM DRAIN.
634 KM WHEN INFLOW > 120cfs BACKWATER WILL FORM AT THE OUTLET AND THE LID ON THE
635 KM UPSTREAM MANHOLE WILL LIKELY BE LIFTED OFF AND SOME FLOW WILL ENTER THE POND
636 KM FROM THAT POINT. WHEN INFLOW>120cfs IT IS ASSUMED THAT THE HEAD LOSS AT
637 KM THE OUTLET WILL BE APPROXIMATELY 1*VELOCITY HEAD FOR THE PURPOSE OF
638 KM CALCULATING THE DISCHARGE CURVE.
639 KM NOTE: THE OUTFLOW CURVE WAS MODIFIED IN THIS MODEL TO ALLOW THE 5 YEAR
640 KM STORM TO RUN. AT ELEV. 92 SQ OF 80 WAS SUBSTITUTED FOR 120. THIS CHANGE
641 KM IS CONSIDERED INSIGNIFICANT AT THE 5 YEAR Q
642 KO 3 1 100
643 RS 1 STOR 0
644 SV 0 0.57 4.63 6.87 10.32
645 SE 92 94 96 98 100
646 SQ 80 126 131 137 144

647 KK RT-DFS
648 KM ROUTE OUTFLOW FROM THE DETENTION BASIN IN A 68" S.D. TO RESEARCH PKWY.
649 RD 800 .018 .013 CIRC 4

650 KK SB-F3
651 KM COMPUTE HYDROGRAPH FOR BASIN F3
652 BA .114
653 LS 0 77.0
654 UD .215
LINE	ID...1...2...3...4...5...6...7...8...9...10
655 KG | AP22
656 KM | COMBINE ROUTED FLOW RT-DTSF TO FLOW FROM BASIN F3 AT THE INTERSECTION OF
657 KM | RESEARCH PARKWAY AND SUMMERSSET DRIVE.
658 HC | 2
659 KKRT-AP22P |
660 KM | ROUTE THE S.D.FLOW FROM THE BRIARGATE PKWY/ SUMMERSSET INTERSECTION TO THE
661 KM | INTERSECTION OF RESEARCH PKWY. AND CHAPEL HILLS DR.
662 RD | 2100 .02 .013 CIRC 5
663 KG | SB-F4
664 KM | COMPUTE HYDROGRAPH FOR BASIN F4
665 BA | .038
666 LS | 0 83.0
667 UD | .197
668 KG | RR-DFF4
669 KM | ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
670 KM | RATE OF 1.6 CFS/ACRE FROM THE 11.5 AC THAT WILL BE DEVELOPED AS LI/O
671 KM | DISCHARGE REDUCTION PER ACRE IS DETERMINED PER THE RATE AND AREA INCLUDED
672 KM | IN THE HUDD FOR BRIARGATE BUSINESS CAMPUS
673 KM | THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
674 KM | THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE SITE WILL LIKELY
675 KM | FREE DISCHARGE TO THE ADJACENT STREET
676 KM | DISCHARGE REDUCTION = LI/O AREA (acres)11.5 x 1.6 cfs = 18.4 cfs
677 RS | 1 STOR 0
678 SV | 0 .001 6 10
679 SE | 100 102 104 106
680 SQ | 0 70.6 70.6 70.6
681 KG | AP23
682 KM | COMBINE ROUTED FLOW RT-AP22P TO FLOW FROM BASIN F4 AT THE INTERSECTION OF
683 KM | RESEARCH PARKWAY AND CHAPEL HILLS DR.
684 HC | 2
685 KKRT-AP23P |
686 KM | ROUTE THE FLOW IN THE STORM DRAIN FROM THE RESEARCH PKWY/CHAPEL HILLS DR.
687 KM | INTERSECTION TO THE INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE
688 KM | FAMILY S.D.
689 RD | 2100 .044 .013 CIRC 4
690 KG | SB-F5
691 KM | COMPUTE HYDROGRAPH FOR BASIN F5
692 BA | .064
693 LS | 0 95.5
694 UD | .121
695 KG | RR-DFF5
696 KM | ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
697 KM | RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
698 KM | AND HISTORIC PEAK 100 YR FLOW RATE PER THE ORIGINAL DBPS CRITERIA FOR LI/O
699 KM | LAND USE. HISTORIC 100 YR PEAK ESTIMATED AT 1.5 CFS/AC. FULLY DEVELOPED 100
700 KM | YR PEAK ESTIMATED AT 5.6 CFS/AC. ESTIMATED REQUIRED DETENTION =
701 KM | (5.6-1.5)*.35*55AC=50cfs TOTAL Qin=225cfs
RECYCLED INPUT

LINE ID........1........2........3........4........5........6........7........8........9........10

702 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
703 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
704 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
705 RS 1 STOR 0
706 SV 0 .001 6 10
707 SE 100 102 104 106
708 SQ 0 175 175 175

709 KK AP24
710 KM COMBINE THE ROUTED FLOW IN THE S.O.(RTAP102) TO FLOW FROM FF1
711 HC 2

712 PKRT-AP24P
713 KM ROUTE THE FLOW IN THE FOCUS STORM DRAIN FROM AP24 AT THE INTERSECTION OF
714 KM EXPLORER DRIVE AND THE FOCUS S.O. TO AP25 AT THE INTERSECTION OF EXPLORER
715 KM DRIVE & BRIARGATE PKWY
716 RD 800 .011 .013 CIRC 5.5

717 KK SB-F6
718 KM COMPUTE HYDROGRAPH FOR BASIN F6
719 BA .038
720 LS 0 98.0
721 UD .106

722 KK RR-DF6
723 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
724 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
725 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
726 KM FULLY DEVELOPED ESTIMATED AT 6.0 CFS/AC. ESTIMATED REQUIRED DETENTION =
727 KM (6.0-1.5)*.35*21.5AC=34cfs TOTAL Qin=138cfs
728 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
729 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
730 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
731 RS 1 STOR 0
732 SV 0 .001 6 10
733 SE 100 102 104 106
734 SQ 0 104 104 104

735 KK SB-F7
736 KM COMPUTE HYDROGRAPH FOR BASIN F7
737 BA .052
738 LS 0 93.0
739 UD .137

740 KK RR-DF7
741 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
742 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
743 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
744 KM FULLY DEVELOPED ESTIMATED AT 5.2 CFS/AC. ESTIMATED REQUIRED DETENTION =
745 KM (5.2-1.5)*.35*29AC=38cfs TOTAL Qin=170cfs
746 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
747 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
748 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
749 RS 1 STOR 0
750 SV 0 .001 6 10
<table>
<thead>
<tr>
<th>LINE</th>
<th>ID........1........2........3........4........5........6........7........8........9........10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SE 100 102 104 106</td>
</tr>
<tr>
<td>753</td>
<td>KK AP25</td>
</tr>
<tr>
<td>754</td>
<td>KM AT THE INTERSECTION OF EXPLORER DR AND BRIARGATE PKWY.</td>
</tr>
<tr>
<td>755</td>
<td>HC 3</td>
</tr>
<tr>
<td>757</td>
<td>KKRT-AP25P</td>
</tr>
<tr>
<td>758</td>
<td>KM PARKWAY TO DETENTION FACILITY 1 AT BRIARGATE PKWY & HIGHWAY B3</td>
</tr>
<tr>
<td>760</td>
<td>RD 1250 .011 .013 CIRC 5.5</td>
</tr>
<tr>
<td>761</td>
<td>KK SB-PMB</td>
</tr>
<tr>
<td>762</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PM8 THE PORTION OF BRIARGATE PARKWAY BETWEEN</td>
</tr>
<tr>
<td>763</td>
<td>KM EXPLORER DR. AND HIGHWAY B3</td>
</tr>
<tr>
<td>764</td>
<td>BA .014</td>
</tr>
<tr>
<td>765</td>
<td>LS 0 98</td>
</tr>
<tr>
<td>766</td>
<td>UD .100</td>
</tr>
<tr>
<td>767</td>
<td>KK AP-DF#1</td>
</tr>
<tr>
<td>768</td>
<td>KM ADD THE FLOW FROM THE FOCUS ON THE FAMILY STORM DRAIN, BASINS PM7 AND PM8,</td>
</tr>
<tr>
<td>769</td>
<td>KM AND FLOW IN PINE CREEK FOR THE TOTAL INFLOW TO DETENTION FACILITY 1</td>
</tr>
<tr>
<td>770</td>
<td>HC 4</td>
</tr>
<tr>
<td>771</td>
<td>KK RR-DF#1</td>
</tr>
<tr>
<td>772</td>
<td>KM ROUTE FLOW THRU DETENTION FACILITY NO.1. VOLUME MODIFIED TO REFLECT PROPOSED</td>
</tr>
<tr>
<td>773</td>
<td>KM ENLARGEMENT. PROPOSED ENLARGEMENT IS TO ADD A MINIMUM OF 0.7 ACRES OF SURFACE</td>
</tr>
<tr>
<td>774</td>
<td>KM AREA TO EACH OF THE CONTOURS AT OR ABOVE ELEVATION 58, OUTLET MODELED</td>
</tr>
<tr>
<td>775</td>
<td>KM ASSUMING THE TOP 7.5' OF THE ENTRANCE TO THE 10'X 12'X HIGH BOX CULVERT IS</td>
</tr>
<tr>
<td>776</td>
<td>KM BLOCKED AND A NEW 12' WIDE OPENING IS CREATED W/ INVERT AT 67.2</td>
</tr>
<tr>
<td>777</td>
<td>KM OUTFLOW CURVE CALCULATED WITH A SPREADSHEET TREATING THE LOWER OPENING AS</td>
</tr>
<tr>
<td>778</td>
<td>KM A SUBMERGED ORIFICE WITH C=.60, h=POD DEPTH - NORMAL DEPTH IN THE OUTFALL</td>
</tr>
<tr>
<td>779</td>
<td>KM AND THE UPPER OPENING TO ELEVATION 73.0 TREATED AS A SHARP CRESTED WEIR WITH</td>
</tr>
<tr>
<td>780</td>
<td>KM A FULL LENGTH OF 12.77' (THE SKEW LENGTH) ADJUSTED 0.2h FOR END CONTRACTIONS</td>
</tr>
<tr>
<td>781</td>
<td>KM AND C=3.22+0.40(h/P) WHERE P=14.2. ABOVE ELEVATION 73.0 THE TOP OUTLET</td>
</tr>
<tr>
<td>782</td>
<td>KM STRUCTURE IS ASSUMED TO TERMINATE WITHOUT A TOP AND THUS ADDITIONAL FLOW CAN</td>
</tr>
<tr>
<td>783</td>
<td>KM OVER TOP THE SIDES AND BACK OF THE ASSUMED 3 SIDED STRUCTURE 12.77 x 10</td>
</tr>
<tr>
<td>784</td>
<td>KD 3 1</td>
</tr>
<tr>
<td>785</td>
<td>RS 1 STOR 0</td>
</tr>
<tr>
<td>786</td>
<td>SA 0 0.18 0.48 4.83 5.23 5.52 5.83 6.13 6.44 6.78</td>
</tr>
<tr>
<td>787</td>
<td>SA 7.14 7.34 7.53 7.73 7.95</td>
</tr>
<tr>
<td>788</td>
<td>SE 54.0 55.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0</td>
</tr>
<tr>
<td>789</td>
<td>SE 72.0 73.0 74.0 75.0 76.0</td>
</tr>
<tr>
<td>790</td>
<td>SQ 0 105 194 275 344 401 451 496 560 747</td>
</tr>
<tr>
<td>791</td>
<td>SQ 998 1142 1247 1750 2100</td>
</tr>
<tr>
<td>792</td>
<td>KK RT-AP26</td>
</tr>
<tr>
<td>793</td>
<td>KM ROUTE THE COMBINED FLOW FROM AP26 AT BRIARGATE PARKWAY DOWN PINE CREEK TO</td>
</tr>
<tr>
<td>794</td>
<td>KM THE INTERSECTION OF PINE CREEK AND HIGHWAY B3. USE AVERAGE</td>
</tr>
<tr>
<td>795</td>
<td>KM APPROXIMATE SECTION AND SLOPE FOR ROUTING</td>
</tr>
<tr>
<td>796</td>
<td>RD 1450 .019 .045 TRAP 40 2</td>
</tr>
</tbody>
</table>
LINE

797 KK SB-PM9
798 KM COMPUTE HYDROGRAPH FOR BASIN PM9
799 BA .068
800 LS 0 93
801 UD .120

802 KK AP27
803 KM COMBINE THE FLOW FROM BASIN PM9 AND THE ROUTED FLOW IN PINE CREEK (RT-AP26) AT
804 KM THE UPSTREAM SIDE OF HIGHWAY 83.
805 HC 2

806 KK SB-PM10
807 KM COMPUTE HYDROGRAPH FOR BASIN PM10
808 BA .048
809 LS 0 98
810 UD .092

811 KKRRDFPM10
812 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
813 KM RATE TO THE APPROXIMATE PEAK FLOW RATE DISCHARGE GOAL FROM THE BASIN
814 KM AS SHOWN IN THE FINAL DRAINAGE REPORT FOR BRIARGATE BUSINESS CAMPUS
815 KM FILING 13 AS APPROVED OCT 31, 1996
816 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
817 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN MAY DISCHARGE
818 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN.
819 KM DISCHARGE FROM THE BASIN PER THE FINAL DRAINAGE REPORT = 140 cfs
820 RS 1 STOR 0
821 SV 0 001 .6 1.5
822 SE 100 102 104 106
823 SQ 0 140 140 140

824 KK RT-PM10
825 KM ROUTE THE FLOW IN THE S.D.FROM THE LOW POINT IN TELESTAR DR. TO THE EXISTING
826 KM CUTFALL TO PINE CREEK JUST UPSTREAM OF HIGHWAY 83.
827 RD 1000 .025 .013 CIRC 4.0

828 KK SB-PM11
829 KM COMPUTE HYDROGRAPH FOR BASIN PM11
830 BA .041
831 LS 0 98
832 UD .096

833 KK AP28
834 KM COMBINE THE FLOW FROM BASIN PM11 WITH THE FLOW IN PINE CREEK AT AP27,
835 KM AND THE ROUTED FLOW FROM BASIN PM10. FLOW IS COMBINED IN PINE CREEK AT
836 KM THE UPSTREAM SIDE OF THE BOX CULVERT UNDER HIGHWAY 83. THIS REPRESENTS THE
837 KM TOTAL FLOW TO PINE CREEK FROM THE BRIARGATE AREA
838 KO 3 1
839 HC 3
840 ZZ
SCHEMATIC DIAGRAM OF STREAM NETWORK

INPUT LINE (V) ROUTING (---->) DIVERSION OR PUMP FLOW

NO. (.) CONNECTOR (---<) RETURN OF DIVERTED OR PUMPED FLOW

15 SB-PN1

32 . SB-PN2
 V
 V

37 . RT-PN2
 .
 .

40 AP1...........
 V
 V

43 RT-AP1

46 . SB-PN3
 .
 .

51 AP2...........
 V
 V

54 RT-AP2

57 . SB-PN4
 V
 V

62 . RT-PN4
 .
 .

65 . . SB-PN5
 .
 .

70 AP3................
 V
 V

73 RT-AP3

76 . SB-PN6
 .
 .

81 APDFG...........
 V
 V

85 RR-DFFG
 V
 V

98 RT-DFFG

102 . SB-PN7
 .
 .
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>SB-PN8</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>APDFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>RR-DF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>RT-DF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>SB-PN9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>SB-PN10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>AP4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>RT-AP4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>SB-PN11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>SB-PN12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>SB-PN13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>APDFE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>RR-DFE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>RT-DFE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>SB-PN14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td>RT-PN14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>SB-PN15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td>AP5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>RT-AP5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td></td>
<td>SB-PS1</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>212</td>
<td>RT-PS1</td>
<td>V</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>SBS-PS2</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>SB-PS3</td>
</tr>
<tr>
<td>225</td>
<td>APDS-FD</td>
<td>V</td>
</tr>
<tr>
<td>228</td>
<td>RR-D/FD</td>
<td>V</td>
</tr>
<tr>
<td>240</td>
<td>RT-D/FD</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td></td>
<td>SB-PS4</td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>SB-PS5</td>
</tr>
<tr>
<td>253</td>
<td>AP6</td>
<td>V</td>
</tr>
<tr>
<td>256</td>
<td>RT-AP6</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>SB-PS6</td>
</tr>
<tr>
<td>265</td>
<td>AP7</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td></td>
<td>SB-PS7</td>
</tr>
<tr>
<td>273</td>
<td>AP7A</td>
<td>V</td>
</tr>
<tr>
<td>276</td>
<td>RT-AP7A</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td>SB-PS8</td>
</tr>
<tr>
<td>285</td>
<td>AP8</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td></td>
<td>SB-PS9</td>
</tr>
<tr>
<td>293</td>
<td>AP9</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td></td>
<td>SB-PS10</td>
</tr>
</tbody>
</table>
802 AP27............
 .
 .

806 . SB-PM10
 . V
 . V

811 . RRFPM10
 . V
 . V

824 . RT-PM10
 . .
 . .

828 . . SB-PM11
 . .
 . .

833 AP28................

/***) RUNOFF ALSO COMPUTED AT THIS LOCATION
PINE CREEK DRAINAGE BASIN - 24HR, FULL DEVELOPED CONDITION (TYPE Ia5 YEAR)
FILE:PCDBPSD5.DAT
FULLY DEVELOPED CONDITION MODEL
998 REVISION
NOTE: THE DIVERSION ROUTINES WERE REMOVED FROM THE MODEL FOR THE 5 YR STORM
NOTE: THE OUTFLOW CURVE FOR THE SUMMER FIELD DETENTION POND WAS MODIFIED
SLIGHTLY TO ALLOW THE 3 YR MODEL TO RUN.
CN VALUES HAVE BEEN ADJUSTED TO PRODUCE PEAK 100 YEAR FLOW RATES SIMILAR TO
100 YEAR FLOW RATES PRODUCED BY RATIONAL METHOD.
**
BEGIN CALCULATIONS IN THE PINE CREEK NORTH FORK WATERSHED
**

14 IO
OUTPUT CONTROL VARIABLES
IPRINT 5 PRINT CONTROL
IPLT 0 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

IT
HYDROGRAPH TIME DATA
NMIN 3 MINUTES IN COMPUTATION INTERVAL
IDATE 1 0 STARTING DATE
ITIME 0000 STARTING TIME
NO 300 NUMBER OF HYDROGRAPH ORDINATES
NDATE 1 0 ENDING DATE
NDTME 1457 ENDING TIME
ICENT 19 CENTURY MARK

COMPUTATION INTERVAL 0.05 HOURS
TOTAL TIME BASE 14.95 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

**

*** END ***
85 KK RR-DFFG *
* *

90 KO OUTPUT CONTROL VARIABLES
 PRNT 3 PRINT CONTROL
 IPRINT 1 PLOT CONTROL
 QSCAL 100 HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

91 RS STORAGE ROUTING
 NSTPS 1 NUMBER OF SUBREACHES
 ITYP STOR TYPE OF INITIAL CONDITION
 RSVRIG 0.00 INITIAL CONDITION
 X 0.00 WORKING R AND D COEFFICIENT

92 SV STORAGE 0.0 0.1 2.8 8.0 14.1 20.9 28.4 36.6 45.5 55.1
 65.3 76.3 88.2

94 SE ELEVATION 59.00 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00
 78.00 80.00 82.00

96 SQ DISCHARGE 0. 10. 47. 93. 130. 160. 180. 203. 222. 240.
 262. 280. 295.

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFFG

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
 (CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
 165. 6.45 87. 38. 38. 38.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
 (AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
 23. 6.45 43. 48. 48. 48.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
 (FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
 68.53 6.45 63.96 61.30 61.30 61.30

CUMULATIVE AREA = 0.73 SQ MI

*** ***
OUTPUT CONTROL VARIABLES

IPRINT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
GSCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVVIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

STORAGE 0.0 0.0 0.1 0.7 1.5 4.4 7.8 11.7 16.1 21.0
 26.4

ELEVATION 90.00 92.00 94.00 96.00 98.00 100.00 102.00 104.00 106.00 108.00
 110.00

DISCHARGE 0. 22. 70. 112. 143. 170. 190. 210. 230. 250.
 265.

 *** *** *** *** ***

HYDROGRAPH AT STATION RR-DFE

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
170. 7.00 (CFS) 103. 46. 46. 46.
 (INCHES) 1.037 1.147 1.147 1.147
 (AC-FT) 51. 56. 56. 56.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
 4. 7.00 2. 1. 1. 1.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
100.03 7.00 96.07 92.83 92.83 92.83

CUMULATIVE AREA = 0.92 SQ MI

HYDROGRAPH ROUTING DATA

77 RS
STORAGE ROUTING

<table>
<thead>
<tr>
<th>NSTPS</th>
<th>ITYP</th>
<th>RSRVIC</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STOR</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

78 SV
STORAGE

| 0.0 | 0.0 | 1.3 | 3.9 | 6.9 | 10.3 | 14.1 | 18.2 | 22.8 | 27.9 |

79 SE
ELEVATION

| 784.00 | 786.00 | 788.00 | 790.00 | 792.00 | 794.00 | 796.00 | 798.00 | 800.00 | 802.00 |

'80 SQ
DISCHARGE

| 0.0 | 25.0 | 80.0 | 135.0 | 173.0 | 210.0 | 240.0 | 263.0 | 280.0 | 1431.0 |

HYDROGRAPH AT STATION RR-DFE

PEAK FLOW

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>6-HR</td>
</tr>
<tr>
<td>177.70</td>
<td>122.0</td>
</tr>
</tbody>
</table>

TIME	MAXIMUM AVERAGE STORAGE			
(INCHES)	6-HR	24-HR	72-HR	14.95-HR
0.913	1.019	1.019	1.019	

TIME	MAXIMUM AVERAGE STAGE			
(AC-FT)	6-HR	24-HR	72-HR	14.95-HR
61.0	68.0	68.0	68.0	

PEAK STAGE	MAXIMUM AVERAGE STAGE			
(FEET)	6-HR	24-HR	72-HR	14.95-HR
792.24	789.81	786.77	786.77	786.77

CUMULATIVE AREA = 1.25 SQ MI

228 KK
RR-DFD
236 KO
OUTPUT CONTROL VARIABLES

IPRINT	3 PRINT CONTROL
IPRINT	1 PLOT CONTROL
GSCAL	100 HYDROGRAPH PLOT SCALE
HYDROGRAPH ROUTING DATA

235 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

237 SV
STORAGE 0.0 6.8 14.3 22.4 31.1 40.6 50.8 61.8

238 SE
ELEVATION 100.00 102.00 104.00 106.00 108.00 110.00 112.00 114.00

239 SQ
DISCHARGE 0. 18. 54. 72. 87. 99. 110. 120.

HYDROGRAPH AT STATION RR-DFD

PEAK FLOW
(CFS) (HR) MAXIMUM AVERAGE FLOW
57. 6.70 (CFS) 38. 18. 18. 18.
(INCHES) 0.758 0.919 0.919 0.919
(AC-FT) 19. 23. 23. 23.

PEAK STORAGE
(AC-FT) (HR) MAXIMUM AVERAGE STORAGE
16. 6.70 (AC-FT) 11. 6. 6. 6.

PEAK STAGE
(FEET) (HR) MAXIMUM AVERAGE STAGE
104.36 6.70 103.13 101.62 101.62 101.62

CUMULATIVE AREA = 0.47 SQ MI

* * *
305 KK * RR-DFD *
* * *

309 KO
OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCALE 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

310 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT
11 SV
STORAGE 0.0 2.7 9.7 18.6 28.0 38.2 49.0 60.5 72.8 85.8
 99.7

713 SE
ELEVATION 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00
 82.00

315 SQ
DISCHARGE 0. 23. 70. 110. 140. 168. 190. 215. 232. 245.
 258.

HYDROGRAPH AT STATION RR-DFC

EAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
153. 6.55 119. 59. 59. 59. 59.
(INCHES) 1.061 1.310 1.310 1.310
(AC-FT) 59. 73. 73. 73.

AK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
33. 6.55 22. 10. 10. 10.

EAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
70.96 6.55 68.71 65.40 65.40 65.40

CUMULATIVE AREA = 1.04 SQ MI

* ***

* *
337 KK *
* RR-DFB *
* *

344 KO
OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

345 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

346 SV
STORAGE 0.0 0.1 1.2 3.3 5.8 8.7 12.1 15.9 20.1 23.6
 24.8 30.0
348 SE ELEVATION 71.20 72.00 74.00 76.00 78.00 80.00 82.00 84.00 86.00 87.60
 88.00 90.00
350 SQ DISCHARGE 0. 22. 73. 130. 169. 202. 236. 260. 285. 301. 371. 1222.

*** *** *** *** *** ***

HYDROGRAPH AT STATION RR-DF8

<table>
<thead>
<tr>
<th>PEAK FLOW</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
<td>6-HR</td>
</tr>
<tr>
<td>159.</td>
<td>7.15</td>
<td>64.</td>
</tr>
<tr>
<td>(INCHES)</td>
<td></td>
<td>0.958 1.182 1.182</td>
</tr>
<tr>
<td>(AC-FT)</td>
<td></td>
<td>64. 79.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK STORAGE</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC-FT)</td>
<td>(HR)</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td>5.</td>
<td>7.15</td>
<td>2. 2. 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK STAGE</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>(HR)</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td>77.49</td>
<td>7.15</td>
<td>76.12 73.63 73.63 73.63</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 1.25 SQ MI

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

* *
516 KK * RR-DF8 *
* *

521 KG OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
I PLOT 1 PLOT CONTROL
O SCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

522 RS STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSRVIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

523 SV STORAGE 0.0 0.0 0.2 1.0 2.0 2.8 4.3 5.3 6.5 11.6
 15.4

525 SQ DISCHARGE 2. 3. 3. 4. 4. 5. 5. 6. 8. 9.
 279.

527 SE ELEVATION 6796.60 6797.00 6798.00 6800.00 6802.00 6803.50 6803.51 6804.00 6804.10 6805.50
HYDROGRAPH AT STATION RR-DFS

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
 (CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
5.0 8.10 5.0 4.0 4.0 4.0
 (INCHES) 0.321 0.619 0.619 0.619
 (AC-FT) 2.0 5.0 5.0 5.0

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
 (AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
4.0 8.15 3.0 2.0 2.0 2.0

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
 (FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
6803.51 7.65 6803.48 6800.68 6800.68 6800.68

CUMULATIVE AREA = 0.14 SQ MI

* * *
* 528 KK * RR-DFS * *
* * *

542 KO
OUTPUT CONTROL VARIABLES
 IPRINT 3 PRINT CONTROL
 IPLT 1 PLOT CONTROL
 QSCAL 100. HYDROGRAPH PLOT SCALE

543 RS
STORAGE ROUTING
 NSTPS 1 NUMBER OF SUBREACHES
 ITP 1 TYPE OF INITIAL CONDITION
 RSVR 0.00 INITIAL CONDITION
 X 0.00 WORKING R AND D COEFFICIENT

544 SV
STORAGE 0.0 0.6 4.6 6.9 10.3

545 SE
ELEVATION 92.00 94.00 96.00 98.00 100.00

546 SQ
DISCHARGE 80. 126. 131. 137. 144.

** HYDROGRAPH AT STATION RR-DFS **
PEAK FLOW

<table>
<thead>
<tr>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
</tbody>
</table>

PEAK STORAGE

<table>
<thead>
<tr>
<th>TIME (AC-FT)</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
</tbody>
</table>

PEAK STAGE

<table>
<thead>
<tr>
<th>TIME (FEET)</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.50</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 0.16 SQ MI

771 KK

* **RR-DF#1** *

784 KO

OUTPUT CONTROL VARIABLES

IPRINT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

785 RS

STORAGE ROUTING

<table>
<thead>
<tr>
<th>NSTPS</th>
<th>1 NUMBER OF SUBREACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITYP</td>
<td>STOR TYPE OF INITIAL CONDITION</td>
</tr>
<tr>
<td>RSVR</td>
<td>0.00 INITIAL CONDITION</td>
</tr>
<tr>
<td>X</td>
<td>0.00 WORKING R AND D COEFFICIENT</td>
</tr>
</tbody>
</table>

786 SA

<table>
<thead>
<tr>
<th>AREA</th>
<th>0.0 0.2 0.5 4.8 5.2 5.5 5.8 6.1 6.4 6.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.1 7.3 7.5 7.7 7.9</td>
</tr>
</tbody>
</table>

788 SE

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>54.00 55.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.00 73.00 74.00 75.00 76.00</td>
</tr>
</tbody>
</table>

790 SQ

<table>
<thead>
<tr>
<th>DISCHARGE</th>
<th>0.0 105.194.275.344.401.451.496.560.747.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>998.1142.1247.1750.2100.</td>
</tr>
</tbody>
</table>

COMPUTED STORAGE-ELEVATION DATA

<table>
<thead>
<tr>
<th>STORAGE</th>
<th>0.00 0.06 0.38 4.93 14.99 25.74 37.09 49.05 61.62 74.83</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATION</td>
<td>54.00 55.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00</td>
</tr>
</tbody>
</table>

STORAGE

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>88.75 95.99 103.43 111.06 118.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATION</td>
<td>72.00 73.00 74.00 75.00 76.00</td>
</tr>
</tbody>
</table>
** WARNING ** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0. TO 105.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS.
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)

HYDROGRAPH AT STATION RR-DF#1

<table>
<thead>
<tr>
<th>PEAK FLOW</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
<td></td>
</tr>
<tr>
<td>408.</td>
<td>8.20</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td>(INCHES)</td>
<td></td>
<td>0.949 1.434 1.434 1.434</td>
</tr>
<tr>
<td>(AC-FT)</td>
<td></td>
<td>224. 338. 338. 338.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC-FT)</td>
</tr>
<tr>
<td>47.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK STAGE</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>(HR)</td>
<td></td>
</tr>
<tr>
<td>65.64</td>
<td>8.20</td>
<td>64.11 59.24 59.24 59.24</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.43 SQ MI

** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

* *
J33 KK AP28 *
* *

838 KO
OUTPUT CONTROL VARIABLES
IPRINT = 3 PRINT CONTROL
IPLLOT = 1 PLOT CONTROL
QSCAL = 0. HYDROGRAPH PLOT SCALE

139 HC
HYDROGRAPH COMBINATION
ICOMP = 3 NUMBER OF HYDROGRAPHS TO COMBINE

** *** *** *** *** *** *** ***

HYDROGRAPH AT STATION AP28

<table>
<thead>
<tr>
<th>PEAK FLOW</th>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
<td></td>
</tr>
<tr>
<td>633.</td>
<td>6.05</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td>(INCHES)</td>
<td></td>
<td>0.966 1.453 1.453 1.453</td>
</tr>
<tr>
<td>(AC-FT)</td>
<td></td>
<td>236. 355. 355. 355.</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.58 SQ MI
Runoff Summary

Flow in Cubic Feet per Second

Time in Hours, Area in Square Miles

<table>
<thead>
<tr>
<th>Operation</th>
<th>Station</th>
<th>Peak Flow</th>
<th>Time of Peak</th>
<th>Average Flow for Maximum Period</th>
<th>Basin Area</th>
<th>Maximum Stage</th>
<th>Time of Max Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph At</td>
<td>SB-PN1</td>
<td>143.0</td>
<td>6.10</td>
<td>15.0</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN2</td>
<td>120.0</td>
<td>6.10</td>
<td>13.0</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PN2</td>
<td>119.0</td>
<td>6.10</td>
<td>13.0</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Combined At</td>
<td>AP1</td>
<td>262.0</td>
<td>6.10</td>
<td>28.0</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP1</td>
<td>259.0</td>
<td>6.10</td>
<td>28.0</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN3</td>
<td>97.0</td>
<td>6.10</td>
<td>11.0</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Combined At</td>
<td>AP2</td>
<td>356.0</td>
<td>6.10</td>
<td>39.0</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP2</td>
<td>353.0</td>
<td>6.10</td>
<td>39.0</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN4</td>
<td>90.0</td>
<td>6.10</td>
<td>10.0</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PN4</td>
<td>90.0</td>
<td>6.10</td>
<td>10.0</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN5</td>
<td>92.0</td>
<td>6.05</td>
<td>10.0</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Combined At</td>
<td>AP3</td>
<td>532.0</td>
<td>6.10</td>
<td>59.0</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP3</td>
<td>528.0</td>
<td>6.10</td>
<td>59.0</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN6</td>
<td>283.0</td>
<td>6.00</td>
<td>30.0</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Combined At</td>
<td>APDFG</td>
<td>770.0</td>
<td>6.05</td>
<td>88.0</td>
<td>0.73</td>
<td>68.53</td>
<td>6.45</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFFG</td>
<td>165.0</td>
<td>6.45</td>
<td>87.0</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFFG</td>
<td>165.0</td>
<td>6.50</td>
<td>87.0</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN7</td>
<td>50.0</td>
<td>6.10</td>
<td>5.0</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN8</td>
<td>104.0</td>
<td>6.05</td>
<td>11.0</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Combined At</td>
<td>APDFF</td>
<td>269.0</td>
<td>6.10</td>
<td>103.0</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFF</td>
<td>170.0</td>
<td>7.00</td>
<td>103.0</td>
<td>0.92</td>
<td>100.03</td>
<td>7.00</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFF</td>
<td>170.0</td>
<td>7.05</td>
<td>103.0</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN9</td>
<td>20.0</td>
<td>6.10</td>
<td>2.0</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN10</td>
<td>26.0</td>
<td>6.05</td>
<td>2.0</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Combined At</td>
<td>AP4</td>
<td>180.0</td>
<td>6.15</td>
<td>107.0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP4</td>
<td>179.0</td>
<td>6.20</td>
<td>107.0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN11</td>
<td>55.</td>
<td>6.10</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.08</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN12</td>
<td>17.</td>
<td>6.05</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.04</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN13</td>
<td>73.</td>
<td>6.10</td>
<td>8.</td>
<td>4.</td>
<td>4.</td>
<td>0.13</td>
</tr>
<tr>
<td>4 Combined At</td>
<td>APDFE</td>
<td>307.</td>
<td>6.15</td>
<td>123.</td>
<td>55.</td>
<td>55.</td>
<td>1.25</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFE</td>
<td>177.</td>
<td>7.70</td>
<td>122.</td>
<td>55.</td>
<td>55.</td>
<td>1.25</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFE</td>
<td>177.</td>
<td>7.70</td>
<td>122.</td>
<td>55.</td>
<td>55.</td>
<td>1.25</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN14</td>
<td>17.</td>
<td>6.05</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.03</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PN14</td>
<td>17.</td>
<td>6.10</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.03</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PN15</td>
<td>39.</td>
<td>6.10</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 Combined At</td>
<td>AP5</td>
<td>181.</td>
<td>7.70</td>
<td>128.</td>
<td>58.</td>
<td>58.</td>
<td>1.35</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP5</td>
<td>181.</td>
<td>7.70</td>
<td>128.</td>
<td>58.</td>
<td>58.</td>
<td>1.35</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS1</td>
<td>113.</td>
<td>6.10</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.15</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PS1</td>
<td>111.</td>
<td>6.10</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.15</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS2</td>
<td>177.</td>
<td>6.05</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.15</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS3</td>
<td>178.</td>
<td>6.10</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.16</td>
</tr>
<tr>
<td>3 Combined At</td>
<td>APDFD</td>
<td>464.</td>
<td>6.10</td>
<td>52.</td>
<td>23.</td>
<td>23.</td>
<td>0.47</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFD</td>
<td>57.</td>
<td>6.70</td>
<td>38.</td>
<td>18.</td>
<td>18.</td>
<td>0.47</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFD</td>
<td>57.</td>
<td>6.75</td>
<td>38.</td>
<td>18.</td>
<td>18.</td>
<td>0.47</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS4</td>
<td>97.</td>
<td>6.00</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS5</td>
<td>138.</td>
<td>6.00</td>
<td>15.</td>
<td>7.</td>
<td>7.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 Combined At</td>
<td>AP6</td>
<td>247.</td>
<td>6.00</td>
<td>62.</td>
<td>30.</td>
<td>30.</td>
<td>0.59</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP6</td>
<td>246.</td>
<td>6.05</td>
<td>62.</td>
<td>30.</td>
<td>30.</td>
<td>0.59</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS6</td>
<td>103.</td>
<td>6.05</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.08</td>
</tr>
<tr>
<td>2 Combined At</td>
<td>AP-7</td>
<td>349.</td>
<td>6.05</td>
<td>72.</td>
<td>34.</td>
<td>34.</td>
<td>0.66</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS7</td>
<td>188.</td>
<td>6.00</td>
<td>21.</td>
<td>9.</td>
<td>9.</td>
<td>0.09</td>
</tr>
<tr>
<td>2 Combined At</td>
<td>AP7A</td>
<td>532.</td>
<td>6.00</td>
<td>92.</td>
<td>43.</td>
<td>43.</td>
<td>0.75</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP7A</td>
<td>529.</td>
<td>6.05</td>
<td>92.</td>
<td>43.</td>
<td>43.</td>
<td>0.75</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS8</td>
<td>163.</td>
<td>6.05</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.12</td>
</tr>
<tr>
<td>2 Combined At</td>
<td>AP8</td>
<td>692.</td>
<td>6.05</td>
<td>108.</td>
<td>50.</td>
<td>50.</td>
<td>0.87</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PS9</td>
<td>250.</td>
<td>6.00</td>
<td>27.</td>
<td>12.</td>
<td>12.</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>AP9</td>
<td>SB-PS10</td>
<td>SB-PS11</td>
<td>SB-PS12</td>
<td>SB-PS13</td>
<td>AP10</td>
<td>AP11</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>COMBINED AT</td>
<td>935.</td>
<td>6.10</td>
<td>2.</td>
<td>5.</td>
<td>2.</td>
<td>181.</td>
<td>162.</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>6.00</td>
<td>2.</td>
<td>2.</td>
<td>3.</td>
<td>2.</td>
<td>6.15</td>
<td>7.05</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFC</td>
<td>153.</td>
<td>6.55</td>
<td>119.</td>
<td>59.</td>
<td>70.96</td>
<td>6.55</td>
<td>6.55</td>
</tr>
<tr>
<td>RT-DFC</td>
<td>153.</td>
<td>6.55</td>
<td>118.</td>
<td>59.</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-PS11</td>
<td>51.</td>
<td>6.05</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>SB-PS12</td>
<td>52.</td>
<td>6.15</td>
<td>7.</td>
<td>3.</td>
<td>3.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>APDFB</td>
<td>233.</td>
<td>6.15</td>
<td>130.</td>
<td>64.</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFB</td>
<td>159.</td>
<td>7.15</td>
<td>128.</td>
<td>64.</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-DFB</td>
<td>159.</td>
<td>7.15</td>
<td>128.</td>
<td>64.</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-PM1</td>
<td>41.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>RT-PM1</td>
<td>41.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>SB-PM2</td>
<td>31.</td>
<td>6.25</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>SB-PM3</td>
<td>32.</td>
<td>6.15</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>408.</td>
<td>6.25</td>
<td>273.</td>
<td>129.</td>
<td>129.</td>
<td>129.</td>
<td></td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>407.</td>
<td>6.30</td>
<td>273.</td>
<td>129.</td>
<td>129.</td>
<td>129.</td>
<td></td>
</tr>
<tr>
<td>SB-PM4</td>
<td>57.</td>
<td>6.10</td>
<td>6.</td>
<td>2.</td>
<td>3.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>437.</td>
<td>6.25</td>
<td>279.</td>
<td>131.</td>
<td>131.</td>
<td>131.</td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>30.</td>
<td>6.10</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>SB-CS1</td>
<td>30.</td>
<td>6.15</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>RT-CS1</td>
<td>149.</td>
<td>6.00</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>149.</td>
<td>6.00</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>167.</td>
<td>6.00</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>AP14</td>
<td>165.</td>
<td>6.00</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Flow Rate</td>
<td>Duration</td>
<td>Duration</td>
<td>Duration</td>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-CS3</td>
<td>61. 6.05</td>
<td>6. 3. 3. 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RR-DFCS3</td>
<td>61. 6.05</td>
<td>6. 3. 3. 0.05</td>
<td>100.99</td>
<td>6.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP15</td>
<td>223. 6.05</td>
<td>26. 11. 11. 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP15</td>
<td>223. 6.05</td>
<td>26. 11. 11. 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-CS4</td>
<td>107. 6.00</td>
<td>11. 5. 5. 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RR-DFVC</td>
<td>17. 6.25</td>
<td>11. 5. 5. 0.05</td>
<td>78.27</td>
<td>6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP16</td>
<td>239. 6.05</td>
<td>37. 16. 16. 0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP16</td>
<td>239. 6.05</td>
<td>37. 16. 16. 0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-CN1</td>
<td>102. 6.10</td>
<td>11. 5. 5. 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RR-DFA</td>
<td>5. 8.10</td>
<td>5. 4. 4. 0.14</td>
<td>6803.51</td>
<td>7.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-DFA</td>
<td>5. 8.15</td>
<td>5. 4. 4. 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-CN2</td>
<td>47. 6.10</td>
<td>5. 2. 2. 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP17</td>
<td>51. 6.10</td>
<td>10. 6. 6. 0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP17</td>
<td>51. 6.15</td>
<td>10. 6. 6. 0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-CN3</td>
<td>40. 6.05</td>
<td>4. 2. 2. 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP18</td>
<td>88. 6.10</td>
<td>14. 8. 8. 0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP18</td>
<td>87. 6.10</td>
<td>14. 8. 8. 0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 COMBINED AT AP19</td>
<td>656. 6.15</td>
<td>324. 156. 156. 3.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP19</td>
<td>651. 6.20</td>
<td>324. 155. 155. 3.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-PM5</td>
<td>78. 6.10</td>
<td>9. 4. 4. 0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP20</td>
<td>712. 6.20</td>
<td>332. 159. 159. 3.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-PM6</td>
<td>186. 6.00</td>
<td>21. 9. 9. 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP21</td>
<td>797. 6.15</td>
<td>350. 168. 168. 3.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-PM7</td>
<td>66. 6.25</td>
<td>10. 5. 5. 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-F1</td>
<td>89. 6.10</td>
<td>10. 4. 4. 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-F1P</td>
<td>87. 6.10</td>
<td>10. 4. 4. 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-F2</td>
<td>24. 6.10</td>
<td>2. 1. 1. 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP-DFS</td>
<td>110. 6.10</td>
<td>12. 6. 6. 0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RR-DFS</td>
<td>92. 6.20</td>
<td>80. 80. 80. 0.16</td>
<td>92.50</td>
<td>6.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-DFS</td>
<td>91. 6.20</td>
<td>80. 80. 80. 0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrograph at</td>
<td>2 Combined at</td>
<td>2 Combined at</td>
<td>2 Combined at</td>
<td>2 Combined at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-F3</td>
<td>AP22</td>
<td>AP23</td>
<td>AP24</td>
<td>AP25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76. 6.10</td>
<td>161. 6.15</td>
<td>194. 6.15</td>
<td>298. 6.05</td>
<td>461. 6.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 4. 4.</td>
<td>89. 84. 84.</td>
<td>93. 86. 86.</td>
<td>107. 92. 92.</td>
<td>125. 100. 100.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>0.27</td>
<td>0.31</td>
<td>0.37</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP22P</td>
<td>SB-F4</td>
<td>SB-F5</td>
<td>RR-DF6</td>
<td>RR-DF5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159. 6.20</td>
<td>38. 6.10</td>
<td>127. 6.00</td>
<td>81. 6.00</td>
<td>127. 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89. 84. 84.</td>
<td>4. 2. 2. 2.</td>
<td>13. 6. 6. 0.6</td>
<td>9. 4. 4. 0.04</td>
<td>13. 6. 6. 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>0.04</td>
<td>0.06</td>
<td>101.45 6.00</td>
<td>101.45 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP23P</td>
<td>SB-F6</td>
<td>SB-F7</td>
<td>RR-DF6</td>
<td>RR-DF7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193. 6.15</td>
<td>81. 6.00</td>
<td>93. 6.00</td>
<td>81. 6.00</td>
<td>93. 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93. 86. 86.</td>
<td>9. 4. 4. 0.04</td>
<td>10. 4. 4. 0.05</td>
<td>107. 92. 92.</td>
<td>125. 100. 100.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>0.04</td>
<td>0.05</td>
<td>101.55 6.00</td>
<td>101.40 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Combined at</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Hydrograph at</td>
<td>Hydrograph at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP25</td>
<td>RT-AP25P</td>
<td>SB-PM8</td>
<td>SB-PM9</td>
<td>AP-DF#1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>461. 6.05</td>
<td>459. 6.05</td>
<td>30. 6.00</td>
<td>124. 6.00</td>
<td>1297. 6.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125. 100. 100.</td>
<td>125. 100. 100.</td>
<td>3. 1. 1.</td>
<td>13. 5. 5.</td>
<td>487. 274. 274.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100. 0.46</td>
<td>0.46</td>
<td>0.01</td>
<td>5. 0.07</td>
<td>443. 4.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP26</td>
<td>RR-DF#1</td>
<td>RT-AP26</td>
<td>SB-PM9</td>
<td>RR-DFPM10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488. 8.20</td>
<td>488. 8.25</td>
<td>459. 273. 273.</td>
<td>492. 8.05</td>
<td>99. 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>452. 274. 274.</td>
<td>452. 273. 273.</td>
<td>278. 278.</td>
<td>102. 6.00</td>
<td>11. 5. 5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.43</td>
<td>4.43</td>
<td>4.43</td>
<td>0.05</td>
<td>101.41 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.64 8.20</td>
<td>65.64 8.20</td>
<td>65.64 8.20</td>
<td>0.05</td>
<td>101.41 6.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routed to</td>
<td>Routed to</td>
<td>Routed to</td>
<td>Hydrograph at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-PM10</td>
<td>AP27</td>
<td>SB-PM10</td>
<td>SB-PM11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98. 6.00</td>
<td>492. 8.05</td>
<td>102. 6.00</td>
<td>87. 6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. 5. 5.</td>
<td>11. 5. 5.</td>
<td>11. 5. 5.</td>
<td>10. 4. 4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Combined at</td>
<td>Routed to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP28</td>
<td>RR-DFPM10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>633. 6.05</td>
<td>99. 6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476. 288. 288.</td>
<td>11. 5. 5.</td>
<td>101.41 6.00</td>
<td>4.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISTDAG</th>
<th>ELEMENT</th>
<th>DT</th>
<th>PEAK</th>
<th>TIME TO PEAK</th>
<th>VOLUME</th>
<th>DT</th>
<th>PEAK</th>
<th>TIME TO PEAK</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>RT-PN2</td>
<td>MANE</td>
<td>0.72</td>
<td>119.56</td>
<td>366.48</td>
<td>0.90</td>
<td>3.00</td>
<td>119.19</td>
<td>366.00</td>
<td>0.90</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7146E+01 EXCESS=0.0000E+00 OUTFLOW=0.7142E+01 BASIN STORAGE=0.5301E-02 PERCENT ERROR= 0.0

| RT-AP1 | MANE | 1.49| 259.34| 367.15 | 0.93 | 3.00| 258.63| 366.00 | 0.93 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1557E+02 EXCESS=0.0000E+00 OUTFLOW=0.1555E+02 BASIN STORAGE=0.2347E-01 PERCENT ERROR= 0.0

| RT-AP2 | MANE | 0.47| 354.83| 366.53 | 1.01 | 3.00| 352.76| 366.00 | 1.01 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2132E+02 EXCESS=0.0000E+00 OUTFLOW=0.2131E+02 BASIN STORAGE=0.9832E-02 PERCENT ERROR= 0.0

| RT-PN4 | MANE | 0.69| 89.89 | 366.54 | 0.87 | 3.00| 89.82 | 366.00 | 0.87 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5312E+01 EXCESS=0.0000E+00 OUTFLOW=0.5308E+01 BASIN STORAGE=0.3826E-02 PERCENT ERROR= 0.0

| RT-AP3 | MANE | 0.58| 529.45| 366.28 | 1.02 | 3.00| 527.53| 366.00 | 1.02 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3189E+02 EXCESS=0.0000E+00 OUTFLOW=0.3188E+02 BASIN STORAGE=0.1805E-01 PERCENT ERROR= 0.0

| RT-DFF | MANE | 3.00| 165.38| 390.00 | 1.22 | 3.00| 165.38| 390.00 | 1.22 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.4759E+02 EXCESS=0.0000E+00 OUTFLOW=0.4742E+02 BASIN STORAGE=0.2226E+00 PERCENT ERROR= -0.1

| RT-DFF | MANE | 3.00| 170.34| 423.00 | 1.15 | 3.00| 170.34| 423.00 | 1.15 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5642E+02 EXCESS=0.0000E+00 OUTFLOW=0.5649E+02 BASIN STORAGE=-.6064E-01 PERCENT ERROR= 0.0

| RT-AP4 | MANE | 1.05| 179.45| 370.65 | 1.11 | 3.00| 179.16| 372.00 | 1.11 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5899E+02 EXCESS=0.0000E+00 OUTFLOW=0.5903E+02 BASIN STORAGE=-.3669E-01 PERCENT ERROR= 0.0

<p>| RT-DFF | MANE | 1.26| 177.35| 463.15 | 1.02 | 3.00| 177.35| 462.00 | 1.02 |</p>
<table>
<thead>
<tr>
<th>Station</th>
<th>Inflow</th>
<th>Excess</th>
<th>Outflow</th>
<th>Basin Storage</th>
<th>Percent Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PN14</td>
<td>1.30</td>
<td>17.18</td>
<td>364.89</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>RT-AP5</td>
<td>0.27</td>
<td>180.98</td>
<td>462.49</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>RT-PS1</td>
<td>1.53</td>
<td>111.98</td>
<td>367.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>RT-DFD</td>
<td>0.95</td>
<td>57.22</td>
<td>403.82</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>RT-AP6</td>
<td>1.83</td>
<td>247.07</td>
<td>362.52</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>RT-AP7A</td>
<td>1.32</td>
<td>531.27</td>
<td>361.41</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>RT-DFC</td>
<td>1.57</td>
<td>153.45</td>
<td>393.68</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>RT-DFB</td>
<td>0.79</td>
<td>159.14</td>
<td>430.27</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>RT-AP11</td>
<td>0.46</td>
<td>162.47</td>
<td>423.60</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td>RT-AP5A</td>
<td>3.00</td>
<td>341.92</td>
<td>432.00</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>Node</td>
<td>INFLOW</td>
<td>EXCESS</td>
<td>OUTFLOW</td>
<td>BASIN STORAGE</td>
<td>PERCENT ERROR</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>RT-PM1</td>
<td>0.73</td>
<td>41.14</td>
<td>366.73</td>
<td>0.87</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP12</td>
<td>1.35</td>
<td>408.19</td>
<td>376.65</td>
<td>1.02</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-CS1</td>
<td>1.50</td>
<td>30.16</td>
<td>367.50</td>
<td>0.64</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP14</td>
<td>0.61</td>
<td>166.33</td>
<td>360.81</td>
<td>1.62</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP15</td>
<td>0.57</td>
<td>222.69</td>
<td>362.24</td>
<td>1.51</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP16</td>
<td>0.13</td>
<td>238.73</td>
<td>363.01</td>
<td>1.64</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-DFA</td>
<td>1.21</td>
<td>5.12</td>
<td>491.17</td>
<td>0.62</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP17</td>
<td>1.00</td>
<td>51.07</td>
<td>367.43</td>
<td>0.66</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP18</td>
<td>0.42</td>
<td>87.62</td>
<td>366.30</td>
<td>0.70</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-AP19</td>
<td>1.95</td>
<td>651.34</td>
<td>372.45</td>
<td>1.02</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Continuity Summary (AC-F1) - Inflow=0.1927E+03 Excess=0.0000E+00 Outflow=0.1923E+03 Basin Storage=0.4095E+00 Percent Error= 0.0

| RT-F1P MANE | 0.98 | 88.15 | 366.75 | 0.86 | 3.00 | 86.90 | 366.00 | 0.86 |

Continuity Summary (AC-F1) - Inflow=0.5475E+01 Excess=0.0000E+00 Outflow=0.5471E+01 Basin Storage=0.5551E-02 Percent Error= 0.0

| RT-DFSF MANE | 0.45 | 91.34 | 373.05 | 11.74 | 3.00 | 90.80 | 372.00 | 11.75 |

Continuity Summary (AC-F1) - Inflow=0.9901E+02 Excess=0.0000E+00 Outflow=0.9901E+02 Basin Storage=0.6495E-09 Percent Error= 0.0

| RT-AP22P MANE | 1.53 | 159.79 | 369.99 | 7.15 | 3.00 | 158.71 | 372.00 | 7.16 |

Continuity Summary (AC-F1) - Inflow=0.1039E+03 Excess=0.0000E+00 Outflow=0.1039E+03 Basin Storage=0.3607E-02 Percent Error= 0.0

| RT-AP23P MANE | 1.12 | 193.03 | 369.58 | 6.41 | 3.00 | 193.01 | 369.00 | 6.42 |

Continuity Summary (AC-F1) - Inflow=0.1061E+03 Excess=0.0000E+00 Outflow=0.1061E+03 Basin Storage=0.3787E-02 Percent Error= 0.0

| RT-AP24P MANE | 0.67 | 296.41 | 363.82 | 5.68 | 3.00 | 294.97 | 363.00 | 5.68 |

Continuity Summary (AC-F1) - Inflow=0.1133E+03 Excess=0.0000E+00 Outflow=0.1133E+03 Basin Storage=0.3872E-02 Percent Error= 0.0

| RT-AP25P MANE | 0.97 | 459.13 | 362.99 | 4.98 | 3.00 | 459.12 | 363.00 | 4.98 |

Continuity Summary (AC-F1) - Inflow=0.1233E+03 Excess=0.0000E+00 Outflow=0.1233E+03 Basin Storage=0.9228E-02 Percent Error= 0.0

| RT-AP26 MANE | 3.00 | 487.92 | 495.00 | 1.43 | 3.00 | 487.92 | 495.00 | 1.43 |

Continuity Summary (AC-F1) - Inflow=0.3388E+03 Excess=0.0000E+00 Outflow=0.3376E+03 Basin Storage=0.1373E+01 Percent Error= -0.1

| RT-PN10 MANE | 0.82 | 98.84 | 361.40 | 2.36 | 3.00 | 98.36 | 360.00 | 2.36 |

Continuity Summary (AC-F1) - Inflow=0.6049E+01 Excess=0.0000E+00 Outflow=0.6047E+01 Basin Storage=0.3163E-02 Percent Error= 0.0

*** Normal end of HEC-1 ***
HEC-1 MODEL OUTPUT
FULLY DEVELOPED CONDITION
• 100-YEAR STORM
FLOOD HYDROGRAPH PACKAGE (HEC-1) * MAY 1991 * VERSION 4.0.1E *
RUN DATE 08/05/1998 TIME 17:34:42 *

X X XXXXX XXXXX X
X X X XX X XX
X X X XX X
XXXXXX XXXX X XXXXX X
X X X X X
X X X X X
X X XXXXX XXXXX XXX

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1QS, HEC1DB, AND HEC1KW.

ID PINE CREEK DRAINAGE BASIN - 24HR, FULL DEVELOPED CONDITION (TYPE IIa100 YEAR)
ID FILE:PCDBP5D.DAT
ID FULLY DEVELOPED CONDITION MODEL
ID 998 REVISION, LAST MODEL REVISION DATE: 8/5/98
ID CN VALUES HAVE BEEN ADJUSTED TO PRODUCE PEAK 100 YEAR FLOW RATES SIMILAR TO
ID 100 YEAR FLOW RATES PRODUCED BY RATIONAL METHOD.
ID **
ID BEGIN CALCULATIONS IN THE PINE CREEK NORTH FORK WATERSHED
ID **

*** FREE ***

*DIAGRAM
IT 3 0 0 300
IO 5

KK SB-PN1
KM COMPUTE HYDROGRAPH FOR BASIN PN1
BA .164
IN 15
PB 4.4
PC 0000 .0005 .0015 .0030 .0045 .0060 .0080 .0100 .0120 .0143
PC .0165 .0188 .0210 .0233 .0255 .0278 .0300 .0320 .0340 .0360
PC .0390 .0460 .0530
PC .0600 .0750 .1000 .4000 .7000 .7250 .7500 .7650 .7800 .7900
PC .8000 .8100 .8200 .8250 .8300 .8350 .8400 .8450 .8500 .8550
PC .8600 .8638 .8675 .8713 .8750 .8788 .8825 .8863 .8900 .8938
PC .8975 .9013 .9050 .9083 .9115 .9148 .9180 .9210 .9240 .9270
PC .9300 .9325 .9350 .9375 .9400 .9425 .9450 .9475 .9500 .9525
PC .9550 .9575 .9600 .9625 .9650 .9675 .9700 .9725 .9750 .9775
PC .9800 .9813 .9825 .9838 .9850 .9863 .9875 .9888 .9900 .9913
PC .9925 .9938 .9950 .9963 .9975 .9988 1.000
LS 0 80.2
UD .188

KK SB-PN2
KM COMPUTE HYDROGRAPH FOR BASIN PN2
BA .169
LS 0 79
UD .192

KK RT-PN2
KM ROUTE FLOW FROM PN2 TO AP1
RD 1000 .03 .013 CIRC 4.5

KK AP1
KM COMBINE THE FLOW FROM BASIN PN1 TO THE ROUTED FLOW FROM BASIN PN2 AT AP1
HC 2

KK RT-AP1
KM ROUTE AP1 TO AP2
RD 2600 .033 .013 CIRC 6
<table>
<thead>
<tr>
<th>LINE</th>
<th>ID..1..2..3..4..5..6..7..8..9..10</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>KK SB-PN3</td>
</tr>
<tr>
<td>44</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN3</td>
</tr>
<tr>
<td>45</td>
<td>BA .083</td>
</tr>
<tr>
<td>46</td>
<td>LS 0 85.8</td>
</tr>
<tr>
<td>47</td>
<td>UD .196</td>
</tr>
<tr>
<td>48</td>
<td>KK AP2</td>
</tr>
<tr>
<td>49</td>
<td>KM COMBINE ROUTED FLOW FROM AP1 WITH FLOW FROM BASIN PN3</td>
</tr>
<tr>
<td>50</td>
<td>HC 2</td>
</tr>
<tr>
<td>51</td>
<td>KK RT-AP2</td>
</tr>
<tr>
<td>52</td>
<td>KM ROUTE FLOW FROM AP2 TO AP3</td>
</tr>
<tr>
<td>53</td>
<td>RD 800 .025 .013 CIRC 7</td>
</tr>
<tr>
<td>54</td>
<td>KK SB-PN4</td>
</tr>
<tr>
<td>55</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN4</td>
</tr>
<tr>
<td>56</td>
<td>BA .114</td>
</tr>
<tr>
<td>57</td>
<td>LS 0 78.5</td>
</tr>
<tr>
<td>58</td>
<td>UD .185</td>
</tr>
<tr>
<td>59</td>
<td>KK RT-PN4</td>
</tr>
<tr>
<td>60</td>
<td>KM ROUTE FLOW FROM BASIN PN4 TO AP3</td>
</tr>
<tr>
<td>61</td>
<td>RD 1000 .040 .013 CIRC 4</td>
</tr>
<tr>
<td>62</td>
<td>KK SB-PN5</td>
</tr>
<tr>
<td>63</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN5</td>
</tr>
<tr>
<td>64</td>
<td>BA .074</td>
</tr>
<tr>
<td>65</td>
<td>LS 0 86.2</td>
</tr>
<tr>
<td>66</td>
<td>UD .175</td>
</tr>
<tr>
<td>67</td>
<td>KK AP3</td>
</tr>
<tr>
<td>68</td>
<td>KM COMBINE ROUTED FLOW RT-PN4 WITH ROUTED FLOW RT-AP2 AND FLOW FROM BASIN PN5</td>
</tr>
<tr>
<td>69</td>
<td>HC 3</td>
</tr>
<tr>
<td>70</td>
<td>KK RT-AP3</td>
</tr>
<tr>
<td>71</td>
<td>KM ROUTE FLOW FROM AP3 TO DETENTION FACILITY "G"</td>
</tr>
<tr>
<td>72</td>
<td>RD 1100 .025 0.013 CIRC 8.5</td>
</tr>
<tr>
<td>73</td>
<td>KK SB-PN6</td>
</tr>
<tr>
<td>74</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN6</td>
</tr>
<tr>
<td>75</td>
<td>BA .146</td>
</tr>
<tr>
<td>76</td>
<td>LS 0 95.0</td>
</tr>
<tr>
<td>77</td>
<td>UD .127</td>
</tr>
<tr>
<td>78</td>
<td>KK APDFG</td>
</tr>
<tr>
<td>79</td>
<td>KM COMBINE ROUTED FLOW FROM AP3 WITH FLOW FROM BASIN PN6 AT REGIONAL DETENITION</td>
</tr>
<tr>
<td>80</td>
<td>KM FACILITY "G"</td>
</tr>
<tr>
<td>81</td>
<td>HC 2</td>
</tr>
</tbody>
</table>
HFR-1 INPUT

LINE ID......1.......2........3........4........5........6........7........8........9........10

82

KM RR-DFFG

83

KM ROUTE FLOW THROUGH A REGIONAL DETENTION FACILITY. ASSUME A 48" DIA OUTLET

84

KM WITH INVERT AT EL. 59. OUTLET Q ESTIMATED WITH BUREAU OF PUBLIC ROADS

85

KM NOMOGRAM FOR INLET CONTROL OF CULVERTS. VOLUME BASED ON CONCEPTUAL

86

KM GRADING PLAN.

87

KD 3 1

88

RS 1 STOR 0

89

SV 0 0 1 2.0 8.0 14.1 20.9 28.4 36.6 45.5 55.1

90

SV 65.3 76.3 88.2

91

SE 59 60 62 64 66 68 70 72 74 76

92

SE 78 80 82

93

SQ 0 0 47 93 130 160 180 203 222 240

94

SQ 262 280 295

95

KM RT-DFF

96

KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM POWERS BLVD.

97

KM 1800 FEET WEST TO DETENTION FACILITY "F"

98

RD 1800 .023 .045 TRAP 15 3

99

KM SB-PN7

100

KM COMPUTE HYDROGRAPH FOR BASIN PN7

101

BA .078

102

LS 0 74.6

103

UD .165

104

KM SB-PN8

105

KM COMPUTE HYDROGRAPH FOR BASIN PN8

106

BA .113

107

LS 0 80.9

108

UD .176

109

KM APDFF

110

KM COMBINE ROUTED FLOW RT-DFF AND FLOW FROM BASINS PN7 AND PN8 AT REGIONAL

111

KM DETENTION FACILITY "F"

112

HC 3

113

KM RR-DFF

114

KM ROUTE FLOW THRU A REGIONAL DETENTION FACILITY. ASSUME A 48 DIA OUTLET WITH

115

KM THE INVERT DEPRESSED 2' BELOW POND INVERT. OUTLET Q ESTIMATED WITH BUREAU

116

KM OF PUBLIC ROADS NOMOGRAM FOR INLET CONTROL OF CULVERTS

117

KD 3 1

118

RS 1 STOR 0

119

SV 0 0 0 0.1 0.7 1.5 4.4 7.8 11.7 16.1 21.0

120

SV 26.4

121

SE 90 92 94 96 98 100 102 104 106 108

122

SE 110

123

SQ 0 22 70 112 143 170 190 210 230 250

124

SQ 265
HEC-1 INPUT

LINE

125 KK RT-DF
126 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM DETENTION
127 KM FACILITY "F" AT THE COLLECTOR STREET CROSSING TO AP-4 AT THE WEST SIDE OF
128 KM BASINS PN9 AND PN10
129 RD 1600 .02 .045 TRAP 20 3

130 KK SB-PN9
131 KM COMPUTE HYDROGRAPH FOR BASIN PN9
132 BA .036
133 LS 0 72.8
134 UD .170

135 KK SB-PN10
136 KM COMPUTE HYDROGRAPH FOR BASIN PN10
137 BA .043
138 LS 0 72.7
139 UD .141

140 KK AP4
141 KM COMBINE ROUTED FLOW RT-DF WITH FLOW FROM BASINS PN9 AND PN10
142 HC 3

143 KK RT-AP4
144 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP4
145 KM TO DETENTION FACILITY "E" AT THE COLLECTOR STREET CROSSING
146 RD 1400 .032 .045 TRAP 20 3

147 KK SB-PN11
148 KM COMPUTE HYDROGRAPH FOR BASIN PN11
149 BA .079
150 LS 0 76.7
151 UD .189

152 KK SB-PN12
153 KM COMPUTE HYDROGRAPH FOR BASIN PN12
154 BA .039
155 LS 0 68.2
156 UD .129

157 KK SB-PN13
158 KM COMPUTE HYDROGRAPH FOR BASIN PN13
159 BA .127
160 LS 0 74
161 UD .195

162 KK APDFE
163 KM COMBINE ROUTED FLOW RT-AP4 WITH FLOW FROM BASINS PN11, PN12, AND PN13
164 KM AT REGIONAL DETENTION FACILITY "E"
165 HC 4
<table>
<thead>
<tr>
<th>LINE</th>
<th>HEC-1 INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>KK RR-DFE</td>
</tr>
<tr>
<td>167</td>
<td>KM NOTE: THE INPUT POND VOLUME REFLECTS THE DESIGN POND VOLUME ON 7-23-98</td>
</tr>
<tr>
<td>168</td>
<td>KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 54" DIA OUTLET WITH</td>
</tr>
<tr>
<td>169</td>
<td>KM THE INVERT DEPRESSED 2' BELOW POND INVERT (INV EL=84. OUTLET Q ESTIMATED</td>
</tr>
<tr>
<td>170</td>
<td>KM WITH BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS</td>
</tr>
<tr>
<td>171</td>
<td>KM DISCHARGE ABOVE EL 100.3 INCLUDES FLOW OVER EMERGENCY SPILLWAY</td>
</tr>
<tr>
<td>172</td>
<td>KM SCALE 1</td>
</tr>
<tr>
<td>173</td>
<td>KD 3 1</td>
</tr>
<tr>
<td>174</td>
<td>RS 1 STOR 0</td>
</tr>
<tr>
<td>175</td>
<td>SV 0 0 1.25 3.91 6.93 10.31 14.07 18.24 22.83 27.87</td>
</tr>
<tr>
<td>176</td>
<td>SE 784 786 788 790 792 794 796 798 800 802</td>
</tr>
<tr>
<td>177</td>
<td>SQ 0 25 80 136 173 210 240 263 280 1431</td>
</tr>
<tr>
<td>178</td>
<td>KK RT-DFE</td>
</tr>
<tr>
<td>179</td>
<td>KM ROUTE THE OUTFLOW FROM DETENTION FACILITY "E" IN A STORM DRAIN TO AP-5</td>
</tr>
<tr>
<td>180</td>
<td>RD 1800 .025 .013 CIRC 4.5</td>
</tr>
<tr>
<td>181</td>
<td>KK SB-PN14</td>
</tr>
<tr>
<td>182</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN14</td>
</tr>
<tr>
<td>183</td>
<td>BA .027</td>
</tr>
<tr>
<td>184</td>
<td>LS 0 74.3</td>
</tr>
<tr>
<td>185</td>
<td>UD .157</td>
</tr>
<tr>
<td>186</td>
<td>KK RT-PN14</td>
</tr>
<tr>
<td>187</td>
<td>KM ROUTE FLOW FROM BASIN PN14 IN A STORM DRAIN TO AP5</td>
</tr>
<tr>
<td>188</td>
<td>RD 1400 .055 .013 CIRC 2</td>
</tr>
<tr>
<td>189</td>
<td>KK SB-PN15</td>
</tr>
<tr>
<td>190</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PN15</td>
</tr>
<tr>
<td>191</td>
<td>BA .074</td>
</tr>
<tr>
<td>192</td>
<td>LS 0 72.7</td>
</tr>
<tr>
<td>193</td>
<td>UD .186</td>
</tr>
<tr>
<td>194</td>
<td>KK AP5</td>
</tr>
<tr>
<td>195</td>
<td>KM COMBINE ROUTED FLOW RT-PN14 TO FLOW FROM BASIN PN15</td>
</tr>
<tr>
<td>196</td>
<td>RC 3</td>
</tr>
<tr>
<td>197</td>
<td>KK RT-AP5</td>
</tr>
<tr>
<td>198</td>
<td>KM ROUTE THE FLOW AT AP5 TO AP5A AT THE CONFLUENCE OF THE FLOWS FROM THE</td>
</tr>
<tr>
<td>199</td>
<td>KM NORTH AND SOUTH FORKS OF PINE CREEK</td>
</tr>
<tr>
<td>200</td>
<td>RD 400 .025 .013 CIRC 5</td>
</tr>
<tr>
<td>201</td>
<td>KM ***</td>
</tr>
<tr>
<td>202</td>
<td>KM **** BEGIN CALCULATIONS FOR THE SOUTH FORK OF PINE CREEK WATERSHIP ****</td>
</tr>
<tr>
<td>203</td>
<td>KM ***</td>
</tr>
<tr>
<td>204</td>
<td>KK SB-PS1</td>
</tr>
<tr>
<td>205</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PS1</td>
</tr>
<tr>
<td>206</td>
<td>BA .150</td>
</tr>
<tr>
<td>207</td>
<td>LS 0 78.4</td>
</tr>
<tr>
<td>208</td>
<td>UD .205</td>
</tr>
</tbody>
</table>
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10

209 KK RT-PS1
210 KM ROUTE FLOW FROM BASIN PS1 TO REGIONAL DETENTION FACILITY “G”
211 RD 2100 .03 .013 CIRC 4.5

212 KK SB-PS2
213 KM COMPUTE HYDROGRAPH FOR BASIN PS2
214 BA .154
215 LS 0 85.2
216 UD .188

217 KK SB-PS3
218 KM COMPUTE HYDROGRAPH FOR BASIN PS3
219 BA .162
220 LS 0 84.8
221 UD .205

222 KK APDFD
223 KM COMBINE ROUTED FLOW RT-PS1 TO FLOW FROM BASINS PS2 AND PS3
224 HC 3

225 KK RR-DFD
226 KM ROUTE FLOW THRU A DETENTION FACILITY
227 KM ASSUME BOTTOM TO BE 240' WIDE X 590' LONG W 4:1 SIDE SLOPES
228 KM ASSUME A 36 DIA OUTLET WITH INVERT AT POND INVERT.
229 KM OUTLET Q ESTIMATED WITH ORIFICE EQUATION ASSUMING C=0.50
230 KM AND DOWNTHEM STREET DRAIN IN NON PRESSURE FLOW
231 RS 1 STOR 0
232 KO 3 1
233 SV 0 6.8 14.3 22.4 31.1 40.6 50.8 61.8
234 SE 100 102 104 106 108 110 112 114
235 SQ 0 18 54 72 87 99 110 120

236 KK RT-DFD
237 KM ROUTE FLOW FROM DFD TO AP-6 AT POWERS BLVD.
238 RD 1000 .025 .013 CIRC 3

239 KK SB-PS4
240 KM COMPUTE HYDROGRAPH FOR BASIN PS4
241 BA .054
242 LS 0 93.2
243 UD .134

244 KK SB-PS5
245 KM COMPUTE HYDROGRAPH FOR BASIN PS5
246 BA .066
247 LS 0 98.0
248 UD .135

249 KK AP6
250 KM COMBINE ROUTED FLOW RT-DFD WITH FLOW FROM BASINS PS4 AND PS5
251 HC 3
HEC-1 INPUT

252 KK RT-AP6
253 KM ROUTE FLOW FROM AP6 TO AP7 AT THE BRIARGATE BLVD./ AUSTIN BLUFFS PKWY.
254 KM INTERSECTION
255 RD 2000 .025 .013 CIRC 5.5

256 KK SB-PS6
257 KM COMPUTE HYDROGRAPH FOR BASIN PS6
258 BA .075
259 LS 0 86.5
260 UD .123

261 KK AP-7
262 KM COMBINE ROUTED FLOW RT-AP6 TO FLOW FROM BASIN PS6
263 HC 2

264 KK SB-PS7
265 KM COMPUTE HYDROGRAPH FOR BASIN PS7
266 BA .089
267 LS 0 98.0
268 UD .119

269 KK AP7A
270 KM COMBINE FLOW AT AP-7 TO FLOW FROM BASIN PS7
271 HC 2

272 KK RT-AP7A
273 KM ROUTE FLOW FROM AP7A TO AP8 AT THE BRIARGATE PARKWAY AND UNION BLVD.
274 KM INTERSECTION
275 RD 2100 .017 .013 CIRC 7.5

276 KK SB-PS8
277 KM COMPUTE HYDROGRAPH FOR BASIN PS8
278 BA .122
279 LS 0 86.0
280 UD .127

281 KK AP8
282 KM COMBINE ROUTED FLOW RT-AP7 TO FLOW FROM BASIN PS8 AT AP8
283 HC 2

284 KK SB-PS9
285 KM COMPUTE HYDROGRAPH FOR BASIN PS9
286 BA .128
287 LS 0 95.3
288 UD .130

289 KK AP9
290 KM COMBINE FLOW AT AP-8 TO FLOW FROM BASIN PS9 AT AP9
291 HC 2
HEC-1 INPUT

LINE

292 KK SB-P510
293 KM COMPUTE HYDROGRAPH FOR BASIN PS10
294 BA .038
295 LS 0 72.9
296 UD .160

297 KK APDFC
298 KM COMBINE FLOW AT AP-9 TO FLOW FROM SB-PS10 IN REGIONAL DETENTION FACILITY "C"
299 KM THIS IS THE TOTAL INFLOW TO DETENTION FACILITY "C"
300 HC 2

301 KK RR-DFC
302 KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 48 DIA OUTLET WITH THE
303 KM INVERT AT EL 62. OUTLET Q ESTIMATED WITH BUREAU OF PUBLIC ROADS NOMOGRAPH
304 KM FOR INLET CONTROL OF CULVERTS, SCALE 1.
305 KO 3 1
306 RS 1 STOR 0
307 SV 0 2.73 9.72 18.56 28.03 38.15 48.95 60.45 72.75 85.85
308 SV 99.66
309 SE 62 64 66 68 70 72 74 76 78 80
310 SE 82
311 SQ 0 23 70 110 140 168 190 215 232 245
312 SQ 258

313 KK RT-DFC
314 KM ROUTE OUTFLOW FROM POND "C" WEST DOWN A STORM DRAIN IN BRIARGATE PKWY.
315 KM TO AP10 AT DETENTION FACILITY "B"
316 RD 2600 .035 .013 CIRC 4

317 KK SB-P511
318 KM COMPUTE HYDROGRAPH FOR BASIN PS11
319 BA .056
320 LS 0 80.3
321 UD .172

322 KK AP10
323 KM COMBINE ROUTED FLOW RT-DFC TO FLOW FROM SB-PS11
324 HC 2

325 KK SB-PS12
326 KM COMPUTE HYDROGRAPH FOR BASIN PS12
327 BA .153
328 LS 0 69.0
329 UD .233

330 KK APDFB
331 KM COMBINE FLOW AT AP10 TO FLOW FROM BASIN PS12
332 HC 2
HEC-1 INPUT

LINE

ID......1......2......3......4......5......6......7......8......9......10

333
334 KK RR-DFB
335 KM ROUTE FLOW THROUGH REGIONAL DETENTION POND "B"
336 KM THIS VOLUME REFLECTS THE DESIGN VOLUME PER PRELIMINARY PLANS ON 7-23-98
337 KM WITH 54' DIA OUTLET SET AT INVERT ELEV. 70.2. OUTLET Q ESTIMATED WITH
338 KM BUREAU OF PUBLIC ROADS NOMO GRAPH FOR INLET CONTROL OF CONCRETE PIPE
339 KM DISCHARGE ABOVE 87.6 INCLUDES FLOW OVER 80' LONG EMERGENCY SPILLWAY
340 KM SCALE 1
341 KO 3 1
342 RS 1 STOR 0
343 SV 0 0.06 1.17 3.30 5.82 8.73 12.07 15.85 20.07 23.60
344 SV 24.76 29.96
345 SE 71.2 72.0 74 76 78 80 82 84 86 87.6
346 SE 88 90
347 SQ 0 22 73 130 169 202 236 260 285 301
348 SQ 371 1222

349 KK RT-DFB
350 KM ROUTE FLOW 1000 LF NORTHWEST IN A STORM DRAIN FROM DETENTION FACILITY "B"
351 KM TO AP-11
352 RD 1000 .021 .013 CIRC 4.5

353 KK SB-PS13
354 KM COMPUTE HYDROGRAPH FOR BASIN PS13
355 BA .065
356 LS 0 74.1
357 UD .169

358 KK AP11
359 KM COMBINE ROUTED FLOW RT-DFB TO FLOW FROM BASIN PS13 AT AP11
360 HC 2

361 KK RT-AP11
362 KM ROUTE FLOW 600 LF NORTHWEST IN A STORM DRAIN FROM AP11 TO AP5A (THE
363 KM CONFLUENCE OF FLOWS FROM THE NORTH AND SOUTH FORKS OF PINE CREEK)
364 RD 600 .021 .013 CIRC 5

365 KK AP5A
366 KM COMBINE ROUTED FLOW AP5 (FLOW FROM THE NORTH FORK OF PINE CREEK) TO ROUTED
367 KM FLOW RT-AP11 (FLOW FROM THE SOUTH FORK OF PINE CREEK)
368 HC 2

369 KK RT-AP5A
370 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL 1300 FEET DOWN THE CHANNEL FROM
371 KM AP5A NEAR THE HISTORIC CONFLUENCE OF PINE CREEK TO AP12 AT THE CONFLUENCE
372 KM OF THE MAIN CHANNEL AND THE LEXINGTON DRIVE STORM DRAIN OUTFALL. USE AN
373 KM APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
374 RD 1300 .023 .045 TRAP 50 2

375 KK SB-PM1
376 KM COMPUTE HYDROGRAPH FOR BASIN PM1
377 BA .054
378 LS 0 78.5
379 UD .203
<table>
<thead>
<tr>
<th>LINE</th>
<th>ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>379</td>
<td>KK</td>
<td>RT-PM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>KM</td>
<td>ROUTE THE FLOW FROM BASIN PM1 1200 LF NORTH IN THE LEXINGTON DR. S.D. TO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>KM</td>
<td>PINE CREEK MAIN CHANNEL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>RD</td>
<td>1200</td>
<td>0.08</td>
<td>0.013</td>
<td>CIR</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>KK</td>
<td>SB-PM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>KM</td>
<td>COMPUTE HYDROGRAPH FOR BASIN PM2, AN AREA OF THE GOLF COURSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>BA</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>LS</td>
<td>0</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>UD</td>
<td>0.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>KK</td>
<td>SB-PM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>KM</td>
<td>COMPUTE HYDROGRAPH FOR BASIN PM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>BA</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>LS</td>
<td>0</td>
<td>73.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>UD</td>
<td>0.248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>KK</td>
<td>AP12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>KM</td>
<td>COMBINE ROUTED FLOW RT-PM1 WITH THE ROUTED FLOW IN PINE CREEK MAIN CHANNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>KM</td>
<td>AND THE FLOW FROM BASINS PM2 AND PM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>HC</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>KK</td>
<td>RT-AP12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>KM</td>
<td>ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP12 NEAR THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>KM</td>
<td>QUiFALL OF LEXINGTON DRIVE STORM DRAIN IT THE CROSSING AT CHAPEL HILLS DRIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>KM</td>
<td>USE AN APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>RD</td>
<td>1600</td>
<td>0.018</td>
<td>0.045</td>
<td>TRAP</td>
<td>30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>KK</td>
<td>SB-PM4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>KM</td>
<td>COMPUTE HYDROGRAPH FOR BASIN PM4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>BA</td>
<td>0.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>LS</td>
<td>0</td>
<td>71.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>UD</td>
<td>0.170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>KK</td>
<td>AP13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>KM</td>
<td>COMBINE FLOW FROM BASIN PM4 TO THE ROUTED FLOW RT-AP12 IN PINE CREEK MAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>KM</td>
<td>CHANNEL ON THE EAST SIDE OF THE CHAPEL HILLS DRIVE CROSSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>HC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>KM</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>KM</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>KM</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>KK</td>
<td>SB-CS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>KM</td>
<td>COMPUTE HYDROGRAPH FOR BASIN CS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>BA</td>
<td>0.053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>LS</td>
<td>0</td>
<td>73.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>UD</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>KK</td>
<td>RT-CS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>KM</td>
<td>ROUTE FLOW 1300 LF WEST IN DYNAMIC DR. ASSUME BULK OF FLOW IS ON THE SURFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>RD</td>
<td>1300</td>
<td>0.021</td>
<td>0.013</td>
<td>TRAP</td>
<td>32</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10

422 KK SB-CS2
423 KM COMPUTE HYDROGRAPH FOR BASIN CS1
424 BA .070
425 LS 0 98.0
426 UD .101

427 KXRK-DFCS2
428 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION OF 1.6 cfs
429 KM /ACRE FROM THE LI/O PROPERTY AS ASSUMED IN THE MMDP FOR BRIARGATE BUSINESS
430 KM CAMPUS. BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
431 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE AT
432 KM THE POND TO REFLECT POTENTIAL FREE DISCHARGE FROM A PORTION OF THE SUBBASIN
433 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 37ac=60 cfs
434 RS 1 STOR 0
435 SV 0 .001 6 10
436 SE 100 102 104 106
437 SQ 0 194 194 194

438 KK AP14
439 KM COMBINE ROUTED FLOW RT-CS1 TO CONTROLLED FLOW FROM BASIN CS2 AT THE
440 KM INTERSECTION OF CHAPEL HILLS DR. AND DYNAMIC DR.
441 HC 2

442 KK RT-AP14
443 KM ROUTE FLOW 1100 LF NORTH IN THE CHAPEL HILLS DR. S.D. TO BRIARGATE PKWY.
444 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
445 KM OF THE STORM DRAIN BETWEEN DYNAMIC DRIVE AND BRIARGATE PARKWAY. SOME OF
446 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE.
447 RD 1100 .02 .013 CIR 4

448 KK SB-CS3
449 KM COMPUTE HYDROGRAPH FOR BASIN CH3
450 BA .053
451 LS 0 84.8
452 UD .177

453 KXRK-DFCS3
454 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION REDUCING
455 KM THE PEAK 100YR FLOW RATE FROM THE 9 ACRES OF THE BASIN THAT ARE DESIGNATED
456 KM AS LI/O USE AS ASSUMED IN MMDP FOR BRIARGATE BUSINESS CAMPUS.
457 KM BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
458 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE
459 KM AT THE POND TO REFLECT FREE DISCHARGE FROM A PORTION OF THE SUB BASIN.
460 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 9=14 cfs
461 RS 1 STOR 0
462 SV 0 .001 6 10
463 SE 100 102 104 106
464 SQ 0 123 123 123
465 KK AP15
466 KM COMBINE ROUTED FLOW RT-AP14 WITH CONTROLLED FLOW FROM BASIN CS3 AT THE
467 KM INTERSECTION OF CHAPEL HILLS DR. AND BRIARGATE PARKWAY. NOTE A SMALL PORTION
468 KM OF BASIN CS3 IS LOCATED DOWNSTEAM OF THIS POINT. FOR THIS MODELING PURPOSE
469 KM THIS IS CONSIDERED INSIGNIFICANT.
470 HC 2
471 KK RT-AP15
472 KM ROUTE FLOW 1400 LF NORTH IN THE CHAPEL HILLS DR. S.D.
473 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
474 KM OF THE STORM DRAIN BETWEEN BRIARGATE PARKWAY AND PINE CREEK. SOME OF
475 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE. A SMALL PORTION OF
476 KM THE SURFACE FLOW MAY BE DIVERTED DOWN BRIARGATE PARKWAY, BUT FOR THE PURPOSE
477 KM OF THIS ANALYSIS ALL OF THE FLOW FROM THE CHAPEL HILLS DRIVE/BRIARGATE PKY.
478 KM INTERSECTION IS ASSUMED TO REACH PINE CREEK AT CHAPEL HILLS DRIVE.
479 RD 1400 .043 .013 CIR 4.5
480 KK SB-CS4
481 KM COMPUTE HYDROGRAPH FOR BASIN CS4
482 BA .053
483 LS 0 95.5
484 UD .101
485 KK RR-DFVC
486 KM ROUTE FLOW THRU THE PROPOSED VILLAGE CENTER DETENTION FACILITY
487 KM POND GRADING PER THE PRELIMINARY GRADING SHOWN IN THE MDDP FOR VILLAGE
488 KM CENTER. DISCHARGE ASSUMES USE OF THE EXISTING 18" DIAMETER STUB.
489 KM WITH THE INVERT SET AT ELEVATION 73. BUREAU OF PUBLIC ROADS NOMOGRAPH
490 KM USED TO ESTIMATE OUTFLOW RATES ASSUMING INLET CONTROL.
491 RS 1 STOR 0
492 SV 000 .032 1.67 3.23 5.00 7.00
493 SE 73 74 76 78 80 82
494 SQ 0 3 13 17 20 22
495 KK AP16
496 KM COMBINE ROUTED FLOW RT-AP15 WITH THE DISCHARGE FROM THE VILLAGE CENTER POND
497 HC 2
498 KK RT-AP16
499 KM ROUTE THE FLOW IN THE CHAPEL HILLS DRIVE STORM DRAIN FROM AP16 TO AP19 IN
500 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
501 KM CROSSING
502 RD 300 .03 .013 CIR 4.5
503 KM ***
504 KM ***BEGIN CALCULATION OF THE NORTH CHAPEL HILLS DR. STORM DRAIN WATERSHED***
505 KM ***
506 KK SB-CN1
507 KM COMPUTE RUNOFF FROM BASIN CN1 THE WATERSHED CONTRIBUTING TO THE PARK SITE AT
508 KM CHAPEL HILLS DRIVE POND (REGIONAL DETENTION FACILITY "A").
509 BA .145
510 LS 0 76.8
511 UD .190
LINE 10...11...12...13...14...15...16...17...18...19...20

512 KK RR-DFA
513 KM ROUTE THE FLOW FROM CN1 THROUGH THE PROPOSED DETENTION POND AT THE PARK
514 KM SITE AT CHAPEL HILLS DRIVE. STAGE STORAGE CURVE PER THE 12/22/97 GRADING PLAN
515 KM DISCHARGE CURVE REFLECTS 12" DIAMETER OUTLET PIPE CONTROL FOR NORMAL DISCHARG
516 KM AND A 100' LONG EMERGENCY SPILLWAY SET AT ELEVATION 6805.5
517 X0 3 1
518 RS 1 STOR 0
519 SV 0 .01 .22 .99 1.95 2.80 4.25 5.31 6.51 11.64
520 SV 15.36
521 SQ 2.35 2.54 3.00 3.73 4.35 4.75 5.36 5.50 8.39 9.01
522 SQ 279
523 SE 6796.6 6797.0 6798.0 6800.0 6802.0 6803.5 6803.51 6804 6804.1 6805.5
524 SE 6806.5

525 KK RT-DFA
526 KM ROUTE OUTFLOW FROM REGIONAL DETENTION POND "A" DOWN THE CHAPEL HILLS STORM
527 KM DRAIN FROM LEXINGTON DRIVE TO TREELAKE DRIVE
528 RD 930 .04 .013 CIRC 1.5

529 KK SB-CN2
530 KM COMPUTE RUNOFF FROM BASIN CN2
531 BA .078
532 LS 0 75.5
533 UD .214

534 KK AP17
535 KM COMBINE ROUTED FLOW RT-DFA AND FLOW FROM BASIN CN2 AT THE INTERSECTION OF
536 KM CHAPEL HILLS DRIVE AND TREELAKE DRIVE
537 HC 2

538 KK RT-AP17
539 KM ROUTE FLOW AT AP17 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO MULLIGAN DR.
540 RD 1400 .05 .013 CIRC 3.5

541 KK SB-CN3
542 KM COMPUTE RUNOFF FROM BASIN CN3
543 BA .043
544 LS 0 80.0
545 UD .157

546 KK AP18
547 KM COMBINE ROUTED FLOW RT-AP17 TO FLOW FROM BASIN CN3 AT INTERSECTION OF CHAPEL
548 KM HILLS DR. AND MULLIGAN DR.
549 HC 2

550 KK RT-AP18
551 KM ROUTE FLOW AT AP18 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO AP19 IN THE
552 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
553 KM CROSSING. NOTE A SMALL PORTION OF BASIN CN3 IS LOCATED SOUTH OF AP18. THIS
554 KM IS CONSIDERED INSIGNIFICANT FOR THE PURPOSE OF THIS ANALYSIS.
555 RD 600 .04 .013 CIRC 3.5
ID........1........2........3........4........5........6........7........8........9........10

556 KK AP19
557 KM COMBINE ROUTED FLOW RT-AP18 FROM THE NORTH CHAPEL HILLS DR. STORM DRAIN
558 KM WITH THE ROUTED FLOW RT-AP16 FROM THE SOUTH CHAPEL HILLS DRIVE STORM DRAIN
559 KM AND THE FLOW IN PINE CREEK MAIN CHANNEL (AP13) AT THE WEST SIDE OF THE CHAPEL
560 KM HILLS DRIVE CROSSING. FLOW THAT IS TAKEN INTO THE PINE CREEK CHANNEL FORM THE
561 KM STREET AT THIS POINT HAS BEEN ACCOUNTED FOR IN BASINS CN3 AND CS3. THIS WAS
562 KM DONE TO REDUCE THE COMPLEXITY OF THE MODEL.
563 HC 3

564 KK RT-AP19
565 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL FROM AP19 AT THE CHAPEL HILLS DRIVE
566 KM CROSSING TO AP20 AT REGIONAL DETENTION FACILITY 1 AT BRIARGATE PARKWAY AND
567 KM HIGHWAY 83. USE AVERAGE SLOPES AND APPROXIMATE CROSS SECTIONS FOR ROUTING.
568 RD 750 .035 .045 TRAP 30 2
569 RD 1000 .025 .045 TRAP 120 2
570 RD 1400 .026 .045 TRAP 60 2

571 KK SB-PN5
572 KM COMPUTE HYDROGRAPH FOR BASIN PN5
573 BA .183
574 LS 0 70.0
575 UD .185

576 KK AP20
577 */* KM COMBINE FLOW FROM BASIN PM5 WITH THE ROUTED FLOW IN PINE CREEK
578 HC 2

579 KK SB-PN6
580 KM COMPUTE HYDROGRAPH FOR PM6 THE AREA BETWEEN CHAPEL HILLS DR. AND DETENTION
581 KM FACILITY 1 BOUNDED BY THE GOLF COURSE AND BRIARGATE PARKWAY. NOTE: THE MDDP
582 KM FOR BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN THIS SUBBASIN. FOR THE
583 KM PURPOSE OF THIS ANALYSIS NO DETENTION IS ASSUMED TO ALLOW THE DEVELOPER THE
584 KM OPTION OF CONSTRUCTING LARGER CONVEYANCE FACILITIES TO DETENTION FACILITY
585 KM NO. 1 AND ALLOWING FREE DISCHARGE FROM THE BASIN.
586 BA .088
587 LS 0 98
588 UD .110

589 KK AP21
590 KM COMBINE FLOW FROM PM6 WITH THE FLOW IN PINE CREEK AT AP21 FOR THE TOTAL FLOW
591 KM IN PINE CREEK CHANNEL AS IT ENTERS DETENTION FACILITY NO 1
592 HC 2

593 KK SB-PN7
594 KM COMPUTE HYDROGRAPH FOR BASIN PM7 THE AREA NORTH OF DETENTION FACILITY 1
595 KM NOTE: THE MDDP FOR THE BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN
596 KM THE NON RESIDENTIAL PORTIONS OF THIS AREA. FOR THE PURPOSE OF THIS ANALYSIS
597 KM FREE DISCHARGE FROM THE BASIN IS ASSUMED. THE RESIDENTIAL PORTION OF THE
598 KM BASIN LOCATED IN OUTSIDE THE CITY LIMITS IS ASSUMED TO BE FULLY DEVELOPED
599 KM AS 1 DU PER ACRE RESIDENTIAL.
600 BA .138
601 LS 0 76.3
602 UD .353
603 KM ***
HEC-1 INPUT

BEGIN CALCULATIONS FOR THE FOCUS ON THE FAMILY STORM DRAIN WATERSHED

SB-F1
COMPUTE HYDROGRAPH FOR BASIN F1

BA .119

LS 0 78.3

UD .208

F1P
DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY ASSUMING
FULL PIPE FLOW IN 36" DIA @3.44% FROM THE SAG POINT IN LEXINGTON DRIVE.
FULL FLOW CAPACITY= 123cfs

DT F1S

DI 123 150 200 250

DQ 0 27 77 127

RT-F1P
ROUTE FLOW IN THE STORM DRAIN 1300 LF WEST FROM THE SAG PT. IN LEXINGTON
DRIVE TO SUMMER FIELD POND

RD 1300 .036 .013 CIRC 3

SB-F2
COMPUTE HYDROGRAPH FOR BASIN F2

BA .039

LS 0 74

UD .171

F1S
RETRIEVE FLOW THAT WILL NOT FIT IN THE STORM DRAIN AT LEXINGTON DRIVE

RT-F1S
ROUTE THE EXCESS FLOW THAT IS ON THE SURFACE OF LEXINGTON DRIVE AT THE SAG
POINT OVERLAND IN A GRASS LINED SWALE TO THE SUMMERFIELD DETENTION BASIN

RD 1300 .037 .040 TRAP 15 6

AP-DFSF
COMBINE ROUTED FLOWS RT-F1S AND RT-F1P WITH FLOW FROM F2 AT THE SUMMER
FIELD POND. THIS IS THE TOTAL FLOW TO THE POND

HC 3

RR-DFSF
ROUTE THE FLOW AT AP-DFSF THROUGH THE SUMMER FIELD DETENTION BASIN.
THE INFLOW/OUTFLOW S.D. FOR THIS FACILITY IS BURIED BELOW THE POND BOTTOM.
THE POND FILLS WHEN THE CAPACITY OF THE DOWNSTREAM REACH OF S.D. IS
EXCEEDED. THIS CONFIGURATION PRESENTS A COMPLEX HYDRAULIC PROBLEM. IT IS
ASSUMED THAT UNTIL INFLOW >120cfs FLOW WILL PASS THROUGH THE STORM DRAIN.
WHEN INFLOW > 120cfs BACKWATER WILL FORM AT THE OUTLET AND THE Lid ON THE
UPSTREAM MANHOLE WILL LIKELY BE LIFTED OFF AND SOME FLOW WILL ENTER THE POND
FROM THAT POINT. WHEN INFLOW>120cfs IT IS ASSUMED THAT THE HEAD LOSS AT
THE OUTLET WILL BE APPROXIMATELY 1*VELOCITY HEAD FOR THE PURPOSE OF
CALCULATING THE DISCHARGE CURVE.

KO 3 1

RS 1 STOR 0
HEC-1 INPUT

ID........2........3........4........5........6........7........8........9........10

651 SV 0 0.57 4.63 6.87 10.32
652 SE 92 94 96 98 100
653 SQ 120 126 131 137 144

654 KK RT-DFS
655 KM ROUTE OUTFLOW FROM THE DETENTION BASIN IN A 48" S.D. TO RESEARCH PKWY.
656 RD 800 .018 .013 CIRC 4

657 KK SB-F3
658 KM COMPUTE HYDROGRAPH FOR BASIN F3
659 BA .114
660 LS 0 77.0
661 UD .215

662 KK AP22
663 KM COMBINE ROUTED FLOW RT-DFS TO FLOW FROM BASIN F3 AT THE INTERSECTION OF
664 KM RESEARCH PARKWAY AND SUMMERSET DRIVE.
665 NC 2

666 KK AP22P
667 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
668 KM INTERSECTION OF RESEARCH PARKWAY AND SUMMERSET DRIVE. CONTROLLING
669 KM DOWNSTREAM STORM DRAIN IS A 60" DIA RCP @ S=1%, FULL FLOW CAPACITY= 260cfs
670 KM THE DIVERTED FLOW IS ASSUMED TO RUN DOWN SUMMERSET DR. SOUTH OF RESEARCH
671 KM PARKWAY AND EVENTUALLY TO COTTONWOOD CREEK.
672 DT AP22S
673 DI 260 261 280 300 340 360 380
674 DQ 0 1 20 40 60 80 100 120

675 KKRT-AP22P
676 KM ROUTE THE S.D.FLOW FROM THE BRIARGATE PKWY/ SUMMERSET INTERSECTION TO THE
677 KM INTERSECTION OF RESEARCH PKWY. AND CHAPEL HILLS DR.
678 RD 2100 .02 .013 CIRC 5

679 KK SB-F4
680 KM COMPUTE HYDROGRAPH FOR BASIN F4
681 BA .038
682 LS 0 83.0
683 UD .197

684 KK RR-DF4
685 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
686 KM RATE OF 1.6 CFS/ACRE FROM THE 11.5 AC THAT WILL BE DEVELOPED AS LI/O
687 KM DISCHARGE REDUCTION PER ACRE IS DETERMINED PER THE RATE AND AREA INCLUDED
688 KM IN THE MOD FOR BRIARGATE BUSINESS CAMPUS
689 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
690 KM THE DISCHARGE, THIS IS APPROPRIATE AS A PORTION OF THE SITE WILL LIKELY
691 KM FREE DISCHARGE TO THE ADJACENT STREET
692 KM DISCHARGE REDUCTION = LI/O AREA (acres)11.5 x 1.6 cfs = 18.4 cfs
693 RS 1 STOR 0
694 SV 0 .001 6 10
695 SE 100 102 104 106
696 SQ 0 70.6 70.6 70.6
ID......1......2......3......4......5......6......7......8......9......10

697 KK AP23
698 KM COMBINE ROUTED FLOW RT-AP22P TO FLOW FROM BASIN F4 AT THE INTERSECTION OF
699 KM RESEARCH PARKWAY AND CHAPEL HILLS DR.
700 HC 2

701 KK AP23P
702 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
703 KM FIRST MANHOLE (MH8) DOWNSTREAM OF THE INTERSECTION OF RESEARCH PARKWAY AND
704 KM CHAPEL HILLS DRIVE. THE MANHOLE IS LOCATED JUST UPSTREAM OF A PIPE SIZE
705 KM REDUCTION FROM 54" TO 48" DIA.. IT IS ASSUMED THAT THE MH LID WILL BE PUSHED
706 KM OFF BY THE HIGH HGL ABOVE THE TRANSITION AT THE ESTIMATED 100 YEAR PEAK
707 KM FLOW RATE. DOWNSTREAM PIPE CAPACITY IS ESTIMATED AT 298 cfs BASED ON
708 KM FULL PIPE CONVEYANCE CAPACITY OF 48" DIA RCP, SLOPE = 4.3%
709 DT AP23S
710 DI 298 300 325 350 375 400 425 450 470
711 DQ 0 2 27 52 77 102 127 152 172

712 KKRT-AP23P
713 KM ROUTE THE FLOW IN THE STORM DRAIN FROM THE RESEARCH PKWY/CHAPEL HILLS DR.
714 KM TO THE INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE
715 KM FAMILY S.D.
716 RD 2100 .044 .013 CIRC 4

717 KK AP23S
718 KM RETRIEVE THE DIVERTED FLOW AT MH8 JUST DOWNSTREAM OF THE INTERSECTION OF
719 KM RESEARCH PARKWAY AND CHAPEL HILLS DRIVE. THIS IS SURFACE FLOW.
720 DR AP23S

721 KKRT-AP23S
722 KM ROUTE THE SURFACE FLOW AT MH8 ACROSS THE FOCUS SITE TO EXPLORER DRIVE
723 KM ASSUME FLOW WILL BE SHALLOW AND WIDE THROUGH THE PARKING LOTS
724 RD 1550 .042 .015 TRAP 75 .01

725 KK SB-F5
726 KM COMPUTE HYDROGRAPH FOR BASIN F5
727 BA .064
728 LS 0 95.5
729 UD .121

730 KK RR-FF5
731 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
732 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
733 KM AND HISTORIC PEAK 100 YR FLOW RATE PER THE ORIGINAL DBPS CRITERIA FOR LI/G
734 KM LAND USE. HISTORIC 100 YR PEAK ESTIMATED AT 1.5 CFS/AC. FULLY DEVELOPED 100
735 KM YR PEAK ESTIMATED AT 5.6 CFS/AC. ESTIMATED REQUIRED DETENTION =
736 KM (5.6-1.5)*.35*35AC=50cfs TOTAL Qin=225cfs
737 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
738 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
739 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
740 RS 1 STOR 0
741 SV 0 .001 6 10
742 SE 100 102 104 106
743 SQ 0 175 175 175
LINE

ID........1........2........3........4........5........6........7........8........9.........10

744 KK AP24
745 KM COMBINE THE ROUTED FLOW IN THE S.D.(RTAP102) TO FLOW FROM FF1 AND THE SURFACE
746 KM FLOW THAT WAS DIVERTED THROUGH THE FOCUS SITE FROM MH8(RP102A) AT THE
747 KM INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE FAMILY STORM DRAIN.
748 HC 3

749 KK AP24P
750 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
751 KM INTERSECTION OF EXPLORER DRIVE AND TELSTAR DRIVE. DOWNSTREAM
752 KM STORM DRAIN IS A 66" DIA RCP & S=.11%, FULL FLOW CAPACITY = 350cfs
753 KM ASSUME THIS DIVERTED FLOW WILL GO WEST DOWN TELSTAR DRIVE
754 DT AP24S
755 DI 350 351 370 390 410 430 450 470 490
756 DQ 0 1 20 40 60 80 100 120 140

757 KKRT-AP24P
758 KM ROUTE THE FLOW IN THE FOCUS STORM DRAIN FROM AP24 AT THE INTERSECTION OF
759 KM EXPLORER DRIVE AND THE FOCUS S.D. TO AP25 AT THE INTERSECTION OF EXPLORER
760 KM DRIVE & BRIARGE PKWY
761 RD 800 .011 .013 CIRC 5.5

762 KK SB-F6
763 KM COMPUTE HYDROGRAPH FOR BASIN F6
764 BA .038
765 LS 0 96.0
766 UD .106

767 KK RR-DF6
768 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
769 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
770 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
771 KM FULLY DEVELOPED ESTIMATED AT 6.0 CFS/AC. ESTIMATED REQUIRED DETENTION =
772 KM (6.0-1.5)*.35*21.5=36cfs TOTAL Qin=138cfs
773 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
774 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
775 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
776 RS 1 STOR 0
777 SV 0 .001 6 10
778 SE 100 102 104 106
779 SQ 0 104 104 104

780 KK SB-F7
781 KM COMPUTE HYDROGRAPH FOR BASIN F7
782 BA .052
783 LS 0 93.0
784 UD .137

785 KK RR-DF7
786 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
787 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
788 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
789 KM FULLY DEVELOPED ESTIMATED AT 5.2 CFS/AC. ESTIMATED REQUIRED DETENTION =
790 KM (5.2-1.5)*.35*29AC=38cfs TOTAL Qin=170cfs
791 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
<table>
<thead>
<tr>
<th>LINE</th>
<th>ID.......1.......2.......3.......4.......5.......6.......7.......8.......9.......10</th>
</tr>
</thead>
<tbody>
<tr>
<td>792</td>
<td>KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES</td>
</tr>
<tr>
<td>793</td>
<td>KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN</td>
</tr>
<tr>
<td>794</td>
<td>RS 1 STOR 0</td>
</tr>
<tr>
<td>795</td>
<td>SV 0 .001 6 10</td>
</tr>
<tr>
<td>796</td>
<td>SE 100 102 104 106</td>
</tr>
<tr>
<td>797</td>
<td>SQ 0 132 132 132</td>
</tr>
<tr>
<td>798</td>
<td>KK AP25</td>
</tr>
<tr>
<td>799</td>
<td>KM COMBINE ROUTED FLOW RT-AP25P TO CONTROLLED FLOW FROM BASINS F6 AND F7</td>
</tr>
<tr>
<td>800</td>
<td>KM AT THE INTERSECTION OF EXPLORER DR AND BRIARGATE PKWY.</td>
</tr>
<tr>
<td>801</td>
<td>HC 3</td>
</tr>
<tr>
<td>802</td>
<td>KK AP25P</td>
</tr>
<tr>
<td>803</td>
<td>KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE</td>
</tr>
<tr>
<td>804</td>
<td>KM INTERSECTION OF EXPLORER DR. AND BRIARGATE PARKWAY. CONTROL APPEARS TO</td>
</tr>
<tr>
<td>805</td>
<td>KM BE DOWNSTREAM 54' DIA S.D. @ 5.5% SLOPE, FULL PIPE CAPACITY=461cfs</td>
</tr>
<tr>
<td>806</td>
<td>KM DIVERTED FLOW IS ASSUMED TO FLOW DOWN BRIARGATE PARKWAY TO THE SUMP</td>
</tr>
<tr>
<td>807</td>
<td>KM ADJACENT TO FACILITY #1</td>
</tr>
<tr>
<td>808</td>
<td>DT AP25S</td>
</tr>
<tr>
<td>809</td>
<td>DI 461 464 475 500 525 550 575 600 625</td>
</tr>
<tr>
<td>810</td>
<td>DQ 0 1 14 39 64 89 114 139 164</td>
</tr>
<tr>
<td>811</td>
<td>KKRT-AP25P</td>
</tr>
<tr>
<td>812</td>
<td>KM ROUTE THE FLOW IN THE S.D.FROM THE INTERSECTION OF EXPLORER DR. & BRIARGATE</td>
</tr>
<tr>
<td>813</td>
<td>KM PARKWAY TO DETENTION FACILITY 1 AT BRIARGATE PKWY & HIGHWAY 83</td>
</tr>
<tr>
<td>814</td>
<td>RD 1250 .011 .013 CIRC 5.5</td>
</tr>
<tr>
<td>815</td>
<td>KK SB-PMB</td>
</tr>
<tr>
<td>816</td>
<td>KM COMPUTE HYDROGRAPH FOR BASIN PMB THE PORTION OF BRIARGATE PARKWAY BETWEEN</td>
</tr>
<tr>
<td>817</td>
<td>KM EXPLORER DR. AND HIGHWAY 83</td>
</tr>
<tr>
<td>818</td>
<td>BA .014</td>
</tr>
<tr>
<td>819</td>
<td>LS 0 98</td>
</tr>
<tr>
<td>820</td>
<td>UD .100</td>
</tr>
<tr>
<td>821</td>
<td>KK AP-DF#1</td>
</tr>
<tr>
<td>822</td>
<td>KM ADD THE FLOW FROM THE FOCUS ON THE FAMILY STORM DRAIN, BASINS PM7 AND PM8,</td>
</tr>
<tr>
<td>823</td>
<td>KM AND FLOW IN PINE CREEK FOR THE TOTAL INFLOW TO DETENTION FACILITY 1</td>
</tr>
<tr>
<td>824</td>
<td>HC 4</td>
</tr>
<tr>
<td>825</td>
<td>KK RR-DF#1</td>
</tr>
<tr>
<td>826</td>
<td>KM ROUTE FLOW THRU DETENTION FACILITY NO.1. VOLUME MODIFIED TO REFLECT PROPOSED</td>
</tr>
<tr>
<td>827</td>
<td>KM ENLARGEMENT. PROPOSED ENLARGEMENT IS TO ADD A MINIMUM OF 0.7 ACRES OF SURFACE</td>
</tr>
<tr>
<td>828</td>
<td>KM AREA TO EACH OF THE CONTOURS AT OR ABOVE ELEVATION 58. OUTLET MODELED</td>
</tr>
<tr>
<td>829</td>
<td>KM ASSUMING THE TOP 7.5' OF THE ENTRANCE TO THE 10'X 12' S HIGH BOX CULVERT IS</td>
</tr>
<tr>
<td>830</td>
<td>KM BLOCKED AND A NEW 12' WIDE OPENING IS CREATED W/ INVERT AT 67.2</td>
</tr>
<tr>
<td>831</td>
<td>KM OUTFLOW CURVE CALCULATED WITH A SPREADSHEET TREATING THE LOWER OPENING AS</td>
</tr>
<tr>
<td>832</td>
<td>KM A SUBMERGED ORIFICE WITH C=.60, h=POD DEPTH - NORMAL DEPTH IN THE OUTFALL</td>
</tr>
<tr>
<td>833</td>
<td>KM AND THE UPPER OPENING TO ELEVATION 73.0 TREATED AS A SHARP CRESTED WEIR WITH</td>
</tr>
<tr>
<td>834</td>
<td>KM A FULL LENGTH OF 12.77' (THE SKEW LENGTH) ADJUSTED 0.2h FOR END CONTRACTIONS</td>
</tr>
<tr>
<td>835</td>
<td>KM AND C=3.22+0.40(h/P), WHERE P=14.2, ABOVE ELEVATION 73.0 THE TOP OUTLET</td>
</tr>
<tr>
<td>836</td>
<td>KM STRUCTURE IS ASSUMED TO TERMINATE WITHOUT A TOP AND THIS ADDITIONAL FLOW CAN</td>
</tr>
<tr>
<td>837</td>
<td>KM OVER TOP THE SIDES AND BACK OF THE ASSUMED 3 SIDED STRUCTURE 12.77 x 10</td>
</tr>
<tr>
<td>838</td>
<td>KO 3 1</td>
</tr>
<tr>
<td>839</td>
<td>RS 1 STOR 0</td>
</tr>
<tr>
<td>840</td>
<td>SA 0 0.18 0.48 4.83 5.23 5.52 5.83 6.13 6.44 6.78</td>
</tr>
</tbody>
</table>
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10
841 SA 7.14 7.34 7.53 7.73 7.93
842 SE 56.0 55.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0
843 SE 72.0 73.0 74.0 75.0 76.0
844 SQ 0 105 194 275 344 401 451 496 560 747
845 SQ 998 1142 1267 1750 2100
846 KK AP25S
847 KM RETRIEVE THE DIVERTED FLOW AT THE INTERSECTION OF BRIARGATE PARKWAY AND
848 KM EXPLORER DRIVE. THIS IS FLOW IN THE STREET.
849 DR AP25S
850 KKRT-AP25S
851 KM ROUTE THE SURFACE FLOW IN BRIARGATE PARKWAY DOWN BRIARGATE PARKWAY TO PINE
852 KM CREEK. ASSUME THIS FLOW ENTERS THE CHANNEL AT THE OUTLET FROM DETENTION
853 KM FACILITY #1.
854 RD 1400 .043 .015 TRAP 75 .01
855 KK AP26
856 KM COMBINE ROUTED FLOW RT-AP25S TO THE OUTFLOW FROM DF#1 AT THE INTERSECTION OF
857 KM BRIARGATE PKWY. AND PINE CREEK
858 HC 2
859 KK RT-AP26
860 KM ROUTE THE COMBINED FLOW FROM AP26 AT BRIARGATE PARKWAY DOWN PINE CREEK TO
861 KM THE INTERSECTION OF PINE CREEK AND HIGHWAY 83. USE AVERAGE
862 KM APPROXIMATE SECTION AND SLOPE FOR ROUTING
863 RD 1450 .019 .045 TRAP 40 2
864 KK SB-PM9
865 KM COMPUTE HYDROGRAPH FOR BASIN PM9
866 BA .068
867 LS 0 93
868 UD .120
869 KK AP27
870 KM COMBINE THE FLOW FROM BASIN PM9 AND THE ROUTED FLOW IN PINE CREEK (RT-AP26) A
871 KM AT THE UPSTREAM SIDE OF HIGHWAY 83.
872 HC 2
873 KK SB-PM10
874 KM COMPUTE HYDROGRAPH FOR BASIN PM10
875 BA .048
876 LS 0 98
877 UD .092
878 KKRRDFPM10
879 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
880 KM RATE TO THE APPROXIMATE PEAK FLOW RATE DISCHARGE GOAL FROM THE BASIN
881 KM AS SHOWN IN THE FINAL DRAINAGE REPORT FOR BRIARGATE BUSINESS CAMPUS
882 KM FILING 13 AS APPROVED OCT 31, 1996
883 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
884 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN MAY DISCHARGE
885 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN.
886 KM DISCHARGE FROM THE BASIN PER THE FINAL DRAINAGE REPORT=140 cfs
887 RS 1 STOR 0
ID......1......2......3......4......5......6......7......8......9......10

888 SV 0 001 .6 1.5
889 SE 100 102 104 106
890 SQ 0 140 140 140

891 KK RT-PM10
892 KM ROUTE THE FLOW IN THE S.D.FROM THE LOW POINT IN TELESTAR DR. TO THE EXISTING
893 KM OUTFALL TO PINE CREEK JUST UPSTREAM OF HIGHWAY 83.
894 RD 1000 .025 .013 CIRC 4.0

895 KK SB-PM11
896 KM COMPUTE HYDROGRAPH FOR BASIN PM11
897 BA .041
898 LS 0 98
899 UD .096

900 KK AP24S
901 KM RETRIEVE THE FLOW THAT WAS IN EXCESS OF THE STORM DRAIN CAPACITY AT THE
902 KM INTERSECTION OF EXPLORER DRIVE AND TELSTAR DRIVE.(AP24S)
903 DR AP24S

904 KKRT-AP24S
905 KM ROUTE THE RETRIEVED FLOW FROM AP24 DOWN TELSTAR DRIVE TO THE SUMP THEN
906 KM ACROSS BBC FILING 19 TO AP28 IN PINE CREEK.
907 RD 2200 .05 .015 TRAP 40 01

908 KK AP28
909 KM COMBINE THE FLOW FROM BASIN PM11 WITH THE ROUTED SURFACE FLOW FROM THE
910 KM INTERSECTION OF TELSTAR DR. AND EXPLORER DRIVE (RT-AP24S), THE FLOW IN
911 KM PINE CREEK AT AP27, AND THE ROUTED FLOW FROM BASIN PM10.
912 KM FLOW IS COMBINED IN PINE CREEK AT THE UPSTREAM SIDE OF THE BOX CULVERT
913 KM UNDER HIGHWAY 83. THIS REPRESENTS THE TOTAL FLOW TO PINE CREEK FROM THE
914 KM BRIARGATE AREA
915 KO 3 1
916 WC 4
917 ZZ

3
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>APDCF</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>301</td>
<td>RR-DFC</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>313</td>
<td>RT-DFC</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>SB-PS11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>322</td>
<td>AP10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>SB-PS12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>APDFB</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>333</td>
<td>RR-DFB</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>348</td>
<td>RT-DFB</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td>SB-PS13</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>357</td>
<td>AP11</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>360</td>
<td>RT-AP11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>AP5A</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>368</td>
<td>RT-AP5A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>SB-PM1</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>379</td>
<td>RT-PM1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>SB-PM2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>SB-PM3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>AP12</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>397</td>
<td>RT-AP12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
903 AP24S
900 . . . AP24S V
 . . . V
904 . . . RT-AP24S
 . . .

908 AP28

***) RUNOFF ALSO COMPUTED AT THIS LOCATION
PINE CREEK DRAINAGE BASIN - 24HR, FULL DEVELOPED CONDITION (TYPE IIa100 YEAR)
FILE:PCDBPSD.DAT
FULLY DEVELOPED CONDITION MODEL
993 REVISION, LAST MODEL REVISION DATE:8/5/98
CN VALUES HAVE BEEN ADJUSTED TO PRODUCE PEAK 100 YEAR FLOW RATES SIMILAR TO
100 YEAR FLOW RATES PRODUCED BY RATIONAL METHOD.
BEGIN CALCULATIONS IN THE PINE CREEK NORTH FORK WATERSHED

11 10 OUTPUT CONTROL VARIABLES
 IPRINT 5 PRINT CONTROL
 IPLOT 0 PLOT CONTROL
 QSCAL 0 HYDROGRAPH PLOT SCALE

1T HYDROGRAPH TIME DATA
 NMIN 3 MINUTES IN COMPUTATION INTERVAL
 IDATE 1 0 STARTING DATE
 ITIME 0000 STARTING TIME
 NQ 300 NUMBER OF HYDROGRAPH ORDNATES
 NQDATE 1 0 ENDING DATE
 NQTIME 1457 ENDING TIME
 ICENT 19 CENTURY MARK

 COMPUTATION INTERVAL 0.05 HOURS
 TOTAL TIME BASE 14.95 HOURS

ENGLISH UNITS
 DRAINAGE AREA SQUARE MILES
 PRECIPITATION DEPTH INCHES
 LENGTH, ELEVATION FEET
 FLOW CUBIC FEET PER SECOND
 STORAGE VOLUME ACRE-FEET
 SURFACE AREA ACRES
 TEMPERATURE DEGREES FAHRENHEIT

*** ***
82 KK
* RR-DFF *
* *

87 KD
OUTPUT CONTROL VARIABLES
IPRT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
GSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

88 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

89 SV
STORAGE
<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.1</th>
<th>2.8</th>
<th>8.0</th>
<th>14.1</th>
<th>20.9</th>
<th>28.4</th>
<th>36.6</th>
<th>45.5</th>
<th>55.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65.3</td>
<td>76.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

91 SE
ELEVATION
<table>
<thead>
<tr>
<th></th>
<th>59.00</th>
<th>60.00</th>
<th>62.00</th>
<th>64.00</th>
<th>66.00</th>
<th>68.00</th>
<th>70.00</th>
<th>72.00</th>
<th>74.00</th>
<th>76.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78.00</td>
<td>80.00</td>
<td>82.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

93 SQ
DISCHARGE
<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>10.0</th>
<th>47.0</th>
<th>93.0</th>
<th>130.0</th>
<th>160.0</th>
<th>180.0</th>
<th>203.0</th>
<th>222.0</th>
<th>240.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>262.0</td>
<td>280.0</td>
<td>295.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH AT STATION RR-DFF

EAK FLOW
<table>
<thead>
<tr>
<th>TIME (HR)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>250. 6.55</td>
<td>500.</td>
<td>200.</td>
<td>100.</td>
<td>85.</td>
</tr>
</tbody>
</table>

DFEK STORAGE
<table>
<thead>
<tr>
<th>TIME (AC-FT)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>60. 6.55</td>
<td>50.</td>
<td>20.</td>
<td>10.</td>
<td>14.</td>
</tr>
</tbody>
</table>

EAK STAGE
<table>
<thead>
<tr>
<th>TIME (FEET)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.93 6.55</td>
<td>70.70</td>
<td>64.43</td>
<td>64.43</td>
<td>64.43</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 0.73 SQ MI

* * *

13 KK
* RR-DFF *
* *

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLAN 1 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

STORAGE ROUTING
NSIPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

STORAGE 0.0 0.0 0.1 0.7 1.5 4.4 7.8 11.7 16.1 21.0
119 26.4

ELEVATION 90.00 92.00 94.00 96.00 98.00 100.00 102.00 104.00 106.00 108.00
121 110.00

DISCHARGE 0. 22. 70. 112. 143. 170. 190. 210. 230. 250.
123 265.

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFF

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
239. 8.05 (CFS) 217. 103. 103. 103. 2.187 2.559 2.559 2.559
(INCHES) (AC-FT) 107. 128. 128. 128.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
18. 8.05 13. 5. 5. 5.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
106.85 8.05 104.67 96.88 96.88 96.88

CUMULATIVE AREA = 0.92 SQ MI

*** ***

* *
166 KK * RR-DFF *
* *

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLAN 1 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE
HYDROGRAPH ROUTING DATA

174 RS
STORAGE ROUTING
NSIPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVIRC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

175 SV
STORAGE 0.0 0.0 1.3 3.9 6.9 10.3 14.1 18.2 22.8 27.9

176 SE
ELEVATION 784.00 786.00 788.00 790.00 792.00 794.00 796.00 798.00 800.00 802.00

177 SQ

HYDROGRAPH AT STATION RR-DFE

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
263. 8.10 253. 129. 129. 129.

(INCHES) 1.889 2.395 2.395 2.395

(AC-FT) 125. 159. 159. 159.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
19. 8.10 17. 8. 8. 8.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
798.27 8.10 797.20 790.61 790.61 790.62

CUMULATIVE AREA = 1.25 SQ MI

*
*
225 KK
*
*

132 KO
OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
OSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

131 RS
STORAGE ROUTING
<table>
<thead>
<tr>
<th>NSTPS</th>
<th>1 NUMBER OF SUBREACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITYP</td>
<td>STOR TYPE OF INITIAL CONDITION</td>
</tr>
<tr>
<td>RSVRIC</td>
<td>0.00 INITIAL CONDITION</td>
</tr>
<tr>
<td>X</td>
<td>0.00 WORKING R AND D COEFFICIENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>233 SV</th>
<th>STORAGE</th>
<th>0.0</th>
<th>6.8</th>
<th>14.3</th>
<th>22.4</th>
<th>31.1</th>
<th>40.6</th>
<th>50.8</th>
<th>61.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>234 SE</td>
<td>ELEVATION</td>
<td>100.00</td>
<td>102.00</td>
<td>104.00</td>
<td>106.00</td>
<td>108.00</td>
<td>110.00</td>
<td>112.00</td>
<td>114.00</td>
</tr>
<tr>
<td>235 SQ</td>
<td>DISCHARGE</td>
<td>0</td>
<td>18.0</td>
<td>54.0</td>
<td>72.0</td>
<td>87.0</td>
<td>99.0</td>
<td>110.0</td>
<td>120.0</td>
</tr>
</tbody>
</table>

*** *** *** *** *** ***

HYDROGRAPH AT STATION RR-DFO

<table>
<thead>
<tr>
<th>PEAK FLOW</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS) 99.0</td>
<td>6-HR 85.0</td>
<td>24-HR 44.0</td>
</tr>
<tr>
<td>(INCHES) 1.689</td>
<td>2.201</td>
<td></td>
</tr>
<tr>
<td>(AC-FT) 42.0</td>
<td>55.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK STORAGE</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC-FT) 41.0</td>
<td>6-HR 31.0</td>
<td>24-HR 15.0</td>
</tr>
<tr>
<td>(FEET) 109.99</td>
<td>107.83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK STAGE</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET) 109.99</td>
<td>6-HR 107.83</td>
<td>24-HR 103.95</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 0.47 SQ MI

HYDROGRAPH ROUTING DATA

OUTPUT CONTROL VARIABLES

- IPRINT: 3 PRINT CONTROL
- IPLT: 1 PLOT CONTROL
- QC: 0. HYDROGRAPH PLOT SCALE

STORAGE ROUTING

<table>
<thead>
<tr>
<th>NSTPS</th>
<th>1 NUMBER OF SUBREACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITYP</td>
<td>STOR TYPE OF INITIAL CONDITION</td>
</tr>
<tr>
<td>RSVRIC</td>
<td>0.00 INITIAL CONDITION</td>
</tr>
<tr>
<td>X</td>
<td>0.00 WORKING R AND D COEFFICIENT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>307 SV</th>
<th>STORAGE</th>
<th>0.0</th>
<th>2.7</th>
<th>9.7</th>
<th>18.6</th>
<th>28.0</th>
<th>38.2</th>
<th>49.0</th>
<th>60.5</th>
<th>72.8</th>
<th>85.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.7</td>
<td></td>
</tr>
</tbody>
</table>
HYDROGRAPH AT STATION RR-DFC

PEAK FLOW

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
</tr>
<tr>
<td>6-HR</td>
<td>113.</td>
</tr>
<tr>
<td>24-HR</td>
<td>139.</td>
</tr>
<tr>
<td>72-HR</td>
<td>139.</td>
</tr>
<tr>
<td>14.95-HR</td>
<td>139.</td>
</tr>
</tbody>
</table>

STORAGE

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC-FT)</td>
<td>(HR)</td>
</tr>
<tr>
<td>6-HR</td>
<td>56.</td>
</tr>
<tr>
<td>24-HR</td>
<td>29.</td>
</tr>
<tr>
<td>72-HR</td>
<td>29.</td>
</tr>
<tr>
<td>14.95-HR</td>
<td>29.</td>
</tr>
</tbody>
</table>

PEAK STAGE

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>(HR)</td>
</tr>
<tr>
<td>6-HR</td>
<td>75.12</td>
</tr>
<tr>
<td>24-HR</td>
<td>69.08</td>
</tr>
<tr>
<td>72-HR</td>
<td>69.08</td>
</tr>
<tr>
<td>14.95-HR</td>
<td>69.08</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 1.04 SQ MI

*
* 333 KK
* RR-DFB *
* *

340 KO
OUTPUT CONTROL VARIABLES

<table>
<thead>
<tr>
<th>IPRT</th>
<th>3 PRINT CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPLT</td>
<td>1 PLOT CONTROL</td>
</tr>
<tr>
<td>OSCAL</td>
<td>0. HYDROGRAPH PLOT SCALE</td>
</tr>
</tbody>
</table>

341 RS
STORAGE ROUTING

<table>
<thead>
<tr>
<th>NSIPS</th>
<th>1 NUMBER OF SUBREACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITYP</td>
<td>STOR TYPE OF INITIAL CONDITION</td>
</tr>
<tr>
<td>RSVRIC</td>
<td>0.00 INITIAL CONDITION</td>
</tr>
<tr>
<td>X</td>
<td>0.00 WORKING R AND D COEFFICIENT</td>
</tr>
</tbody>
</table>

342 SV
STORAGE

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.00</td>
<td>0.00</td>
</tr>
<tr>
<td>64.00</td>
<td>0.10</td>
</tr>
<tr>
<td>66.00</td>
<td>1.20</td>
</tr>
<tr>
<td>68.00</td>
<td>3.30</td>
</tr>
<tr>
<td>70.00</td>
<td>5.80</td>
</tr>
<tr>
<td>72.00</td>
<td>8.70</td>
</tr>
<tr>
<td>74.00</td>
<td>12.10</td>
</tr>
<tr>
<td>76.00</td>
<td>15.90</td>
</tr>
<tr>
<td>78.00</td>
<td>20.10</td>
</tr>
<tr>
<td>80.00</td>
<td>23.60</td>
</tr>
</tbody>
</table>

344 SE
ELEVATION

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.20</td>
<td>24.80</td>
</tr>
<tr>
<td>72.00</td>
<td>30.00</td>
</tr>
<tr>
<td>74.00</td>
<td>88.00</td>
</tr>
<tr>
<td>76.00</td>
<td>90.00</td>
</tr>
<tr>
<td>78.00</td>
<td>84.00</td>
</tr>
<tr>
<td>80.00</td>
<td>86.00</td>
</tr>
<tr>
<td>82.00</td>
<td>87.60</td>
</tr>
</tbody>
</table>
346 sq

**

**

**

**

HYDROGRAPH AT STATION RR-DFB

<p>| PEAK FLOW TIME MAXIMUM AVERAGE FLOW |</p>
<table>
<thead>
<tr>
<th>(CFS)</th>
<th>(HR)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>247.</td>
<td>7.25</td>
<td>286.</td>
<td>125.</td>
<td>125.</td>
<td>125.</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>1.685</td>
<td>2.327</td>
<td>2.327</td>
<td>2.327</td>
<td></td>
</tr>
<tr>
<td>(AC-Ft)</td>
<td>112.</td>
<td>155.</td>
<td>155.</td>
<td>155.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE |</p>
<table>
<thead>
<tr>
<th>(AC-FT)</th>
<th>(HR)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>7.25</td>
<td>11.</td>
<td>6.</td>
<td>6.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| PEAK STAGE TIME MAXIMUM AVERAGE STAGE |</p>
<table>
<thead>
<tr>
<th>(FEET)</th>
<th>(HR)</th>
<th>6-HR</th>
<th>24-HR</th>
<th>72-HR</th>
<th>14.95-HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.91</td>
<td>7.25</td>
<td>81.49</td>
<td>76.71</td>
<td>76.71</td>
<td>76.71</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 1.25 SQ MI

**

**

**

**

* * *

512 KK
* RR-DFB *
* *

517 KO

OUTPUT CONTROL VARIABLES

IPRINT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
QSCALE 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

518 RS

STORAGE ROUTING

NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSTYPE 0.00 INITIAL CONDITION
RSTYPE 0.00 WORKING R AND D COEFFICIENT

519 SV

STORAGE 0.0 0.0 0.2 1.0 2.0 2.8 4.3 5.3 6.5 11.6
15.4

521 SQ

DISCHARGE 2. 3. 3. 4. 4. 5. 5. 6. 8. 9.
279.

523 SE

ELEVATION 6796.60 6797.00 6798.00 6800.00 6802.00 6803.50 6803.51 6804.00 6804.10 6805.50
6806.50

HYDROGRAPH AT STATION RR-DFS

PEAK FLOW

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
</tr>
<tr>
<td>9.</td>
<td>8.20</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>0.573</td>
</tr>
<tr>
<td>(AC-FT)</td>
<td>4.</td>
</tr>
</tbody>
</table>

PEAK STORAGE

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC-FT)</td>
<td>(HR)</td>
</tr>
<tr>
<td>11.</td>
<td>8.30</td>
</tr>
</tbody>
</table>

PEAK STAGE

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>(HR)</td>
</tr>
<tr>
<td>6805.44</td>
<td>8.30</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 0.14 SQ MI

* * *
* 38 KK * RR-DFS *
* * *

49 KO

OUTPUT CONTROL VARIABLES

IPRTNT 3 PRINT CONTROL
IPL07T 1 PLOT CONTROL
GSCAL 0 HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

50 RS

STORAGE ROUTING

NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

51 SV

STORAGE 0.0 0.6 4.6 6.9 10.3

652 SE

ELEVATION 92.00 94.00 96.00 98.00 100.00

63 SQ

DISCHARGE 120. 126. 131. 137. 144.

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFS

PEAK FLOW

<table>
<thead>
<tr>
<th>TIME</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
</tr>
<tr>
<td>9.</td>
<td>8.20</td>
</tr>
</tbody>
</table>
PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
4. 6.35 0. 0. 0. 0. 0.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(HEIGHT) (HR) 6-HR 24-HR 72-HR 14.95-HR
95.57 6.35 92.18 92.18 92.18 92.18

CUMULATIVE AREA = 0.16 SQ MI

* *
825 XX * RR-DF#1 *
* *

838 KO
OUTPUT CONTROL VARIABLES
IPRN = 3 PRINT CONTROL
IPLOT = 1 PLOT CONTROL
QSCAL = 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

839 RS
STORAGE ROUTING
NSTIPS = 1 NUMBER OF SUBREACHES
STOR = 1 TYPE OF INITIAL CONDITION
RSVRIC = 0.00 INITIAL CONDITION
R = 0.00 WORKING R AND D COEFFICIENT

840 SA
AREA = 0.0 0.2 0.5 4.8 5.2 5.5 5.8 6.1 6.4 6.8
 7.1 7.3 7.5 7.7 7.9

842 SE
ELEVATION = 54.00 55.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00
 72.00 73.00 74.00 75.00 76.00

844 SQ
DISCHARGE = 0. 105. 194. 275. 344. 401. 451. 496. 560. 747.
 998. 1142. 1247. 1750. 2100.

COMPUTED STORAGE-ELEVATION DATA

STORAGE = 0.00 0.06 0.38 4.93 14.99 25.74 37.09 49.05 61.62 74.83
ELEVATION = 54.00 55.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00
STORAGE = 88.75 95.99 103.43 111.06 118.90
ELEVATION = 72.00 73.00 74.00 75.00 76.00

*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0.0 TO 105.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS.
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)

*** *** *** *** *** ***

HYDROGRAPH AT STATION RR-DF#1

<table>
<thead>
<tr>
<th>Peak Flow</th>
<th>Time (HR)</th>
<th>Maximum Average Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>1147.</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td></td>
<td>6.65</td>
<td>816. 497. 497. 497.</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>1.714</td>
<td>2.600 2.600 2.600</td>
</tr>
<tr>
<td>(AC·FT)</td>
<td>405.</td>
<td>614. 614. 614.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AK Storage</th>
<th>Time (HR)</th>
<th>Maximum Average Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC·FT)</td>
<td>96.</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td></td>
<td>6.65</td>
<td>78. 44. 44. 44.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak Stage</th>
<th>Time (HR)</th>
<th>Maximum Average Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>73.05</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td></td>
<td>6.65</td>
<td>70.47 63.94 63.94 63.94</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.43 SQ MI

* *
908 KK * AP28 *
* *

915 K0

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLOT 1 PLOT CONTROL
GSCAL 0 HYDROGRAPH PLOT SCALE

16 HC

HYDROGRAPH COMBINATION
ICOMP 4 NUMBER OF HYDROGRAPHS TO COMBINE

*** *** *** *** *** ***

HYDROGRAPH AT STATION AP28

<table>
<thead>
<tr>
<th>Peak Flow</th>
<th>Time (HR)</th>
<th>Maximum Average Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>1207.</td>
<td>6-HR 24-HR 72-HR 14.95-HR</td>
</tr>
<tr>
<td></td>
<td>6.30</td>
<td>871. 530. 530. 530.</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>1.766</td>
<td>2.679 2.679 2.679</td>
</tr>
<tr>
<td>(AC·FT)</td>
<td>432.</td>
<td>655. 655. 655.</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.58 SQ MI
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>PEAK FLOW</th>
<th>TIME OF PEAK</th>
<th>AVERAGE FLOW FOR MAXIMUM PERIOD</th>
<th>BASIN AREA</th>
<th>MAXIMUM STAGE</th>
<th>MAX STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN1</td>
<td>355.</td>
<td>6.05</td>
<td>39.</td>
<td>17.</td>
<td>17</td>
<td>0.16</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN2</td>
<td>306.</td>
<td>6.05</td>
<td>34.</td>
<td>15.</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PN2</td>
<td>305.</td>
<td>6.10</td>
<td>34.</td>
<td>15.</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP1</td>
<td>657.</td>
<td>6.05</td>
<td>72.</td>
<td>32.</td>
<td>32</td>
<td>0.31</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP1</td>
<td>656.</td>
<td>6.10</td>
<td>72.</td>
<td>31.</td>
<td>31</td>
<td>0.31</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN3</td>
<td>213.</td>
<td>6.05</td>
<td>24.</td>
<td>10.</td>
<td>10</td>
<td>0.08</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP2</td>
<td>866.</td>
<td>6.10</td>
<td>96.</td>
<td>42.</td>
<td>42</td>
<td>0.40</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP2</td>
<td>864.</td>
<td>6.10</td>
<td>96.</td>
<td>42.</td>
<td>42</td>
<td>0.40</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN4</td>
<td>234.</td>
<td>6.05</td>
<td>25.</td>
<td>11.</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PN4</td>
<td>231.</td>
<td>6.10</td>
<td>25.</td>
<td>11.</td>
<td>11</td>
<td>0.11</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN5</td>
<td>199.</td>
<td>6.05</td>
<td>22.</td>
<td>9.</td>
<td>9</td>
<td>0.07</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP3</td>
<td>1285.</td>
<td>6.10</td>
<td>143.</td>
<td>62.</td>
<td>62</td>
<td>0.58</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP3</td>
<td>1283.</td>
<td>6.10</td>
<td>143.</td>
<td>62.</td>
<td>62</td>
<td>0.58</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN6</td>
<td>507.</td>
<td>6.00</td>
<td>55.</td>
<td>24.</td>
<td>24</td>
<td>0.15</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>APDFG</td>
<td>1747.</td>
<td>6.05</td>
<td>198.</td>
<td>86.</td>
<td>86</td>
<td>0.73</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFFG</td>
<td>250.</td>
<td>6.55</td>
<td>183.</td>
<td>85.</td>
<td>85</td>
<td>0.73</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFFG</td>
<td>250.</td>
<td>6.60</td>
<td>183.</td>
<td>85.</td>
<td>85</td>
<td>0.73</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN7</td>
<td>144.</td>
<td>6.05</td>
<td>15.</td>
<td>7.</td>
<td>7</td>
<td>0.08</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN8</td>
<td>257.</td>
<td>6.05</td>
<td>27.</td>
<td>12.</td>
<td>12</td>
<td>0.11</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>APDF</td>
<td>578.</td>
<td>6.10</td>
<td>224.</td>
<td>103.</td>
<td>103</td>
<td>0.92</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFF</td>
<td>239.</td>
<td>8.05</td>
<td>217.</td>
<td>103.</td>
<td>103</td>
<td>0.92</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFF</td>
<td>239.</td>
<td>8.10</td>
<td>217.</td>
<td>103.</td>
<td>103</td>
<td>0.92</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN9</td>
<td>61.</td>
<td>6.05</td>
<td>6.</td>
<td>3.</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN10</td>
<td>78.</td>
<td>6.05</td>
<td>8.</td>
<td>3.</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP4</td>
<td>309.</td>
<td>6.10</td>
<td>229.</td>
<td>109.</td>
<td>109</td>
<td>1.00</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP4</td>
<td>307.</td>
<td>6.10</td>
<td>229.</td>
<td>109.</td>
<td>109</td>
<td>1.00</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PN11</td>
<td>150.</td>
<td>6.10</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.08</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PN12</td>
<td>60.</td>
<td>6.05</td>
<td>6.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PN13</td>
<td>215.</td>
<td>6.10</td>
<td>23.</td>
<td>10.</td>
<td>10.</td>
<td>0.13</td>
</tr>
<tr>
<td>4 Combined AT</td>
<td>APDFE</td>
<td>724.</td>
<td>6.10</td>
<td>272.</td>
<td>129.</td>
<td>129.</td>
<td>1.25</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFE</td>
<td>265.</td>
<td>8.10</td>
<td>253.</td>
<td>129.</td>
<td>129.</td>
<td>1.25</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFE</td>
<td>265.</td>
<td>8.10</td>
<td>253.</td>
<td>129.</td>
<td>129.</td>
<td>1.25</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PN14</td>
<td>50.</td>
<td>6.05</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.03</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PN14</td>
<td>49.</td>
<td>6.05</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.03</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PN15</td>
<td>120.</td>
<td>6.10</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 Combined AT</td>
<td>AP5</td>
<td>368.</td>
<td>6.15</td>
<td>267.</td>
<td>137.</td>
<td>137.</td>
<td>1.35</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP5</td>
<td>368.</td>
<td>6.15</td>
<td>267.</td>
<td>137.</td>
<td>137.</td>
<td>1.35</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS1</td>
<td>296.</td>
<td>6.10</td>
<td>33.</td>
<td>14.</td>
<td>14.</td>
<td>0.15</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-PS1</td>
<td>294.</td>
<td>6.10</td>
<td>33.</td>
<td>14.</td>
<td>14.</td>
<td>0.15</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS2</td>
<td>394.</td>
<td>6.05</td>
<td>43.</td>
<td>19.</td>
<td>19.</td>
<td>0.15</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS3</td>
<td>397.</td>
<td>6.05</td>
<td>45.</td>
<td>19.</td>
<td>19.</td>
<td>0.16</td>
</tr>
<tr>
<td>3 Combined AT</td>
<td>APDFD</td>
<td>1073.</td>
<td>6.10</td>
<td>121.</td>
<td>53.</td>
<td>53.</td>
<td>0.47</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DFD</td>
<td>99.</td>
<td>6.80</td>
<td>85.</td>
<td>44.</td>
<td>44.</td>
<td>0.47</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-DFD</td>
<td>99.</td>
<td>6.80</td>
<td>85.</td>
<td>44.</td>
<td>44.</td>
<td>0.47</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS4</td>
<td>181.</td>
<td>6.00</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.05</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS5</td>
<td>237.</td>
<td>6.00</td>
<td>27.</td>
<td>12.</td>
<td>12.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 Combined AT</td>
<td>AP6</td>
<td>470.</td>
<td>6.00</td>
<td>126.</td>
<td>65.</td>
<td>65.</td>
<td>0.59</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP6</td>
<td>468.</td>
<td>6.05</td>
<td>126.</td>
<td>64.</td>
<td>64.</td>
<td>0.59</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS6</td>
<td>218.</td>
<td>6.00</td>
<td>22.</td>
<td>10.</td>
<td>10.</td>
<td>0.08</td>
</tr>
<tr>
<td>2 Combined AT</td>
<td>AP-7</td>
<td>681.</td>
<td>6.05</td>
<td>148.</td>
<td>74.</td>
<td>74.</td>
<td>0.66</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS7</td>
<td>321.</td>
<td>6.00</td>
<td>36.</td>
<td>16.</td>
<td>16.</td>
<td>0.09</td>
</tr>
<tr>
<td>2 Combined AT</td>
<td>AP7A</td>
<td>998.</td>
<td>6.00</td>
<td>183.</td>
<td>90.</td>
<td>90.</td>
<td>0.75</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP7A</td>
<td>989.</td>
<td>6.05</td>
<td>183.</td>
<td>90.</td>
<td>90.</td>
<td>0.75</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS8</td>
<td>348.</td>
<td>6.00</td>
<td>35.</td>
<td>15.</td>
<td>15.</td>
<td>0.12</td>
</tr>
<tr>
<td>2 Combined AT</td>
<td>AP8</td>
<td>1332.</td>
<td>6.00</td>
<td>218.</td>
<td>105.</td>
<td>105.</td>
<td>0.87</td>
</tr>
<tr>
<td>Hydrograph AT</td>
<td>SB-PS9</td>
<td>446.</td>
<td>6.00</td>
<td>49.</td>
<td>21.</td>
<td>21.</td>
<td>0.13</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Flow Rate</td>
<td>Elevation</td>
<td>Depth</td>
<td>Cumulative</td>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP9</td>
<td>1778.0</td>
<td>6.00</td>
<td>267.</td>
<td>126.</td>
<td>126.</td>
<td>1.00</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS10</td>
<td>66.05</td>
<td>7.00</td>
<td>3.</td>
<td>3.</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP10</td>
<td>1840.0</td>
<td>6.00</td>
<td>273.</td>
<td>129.</td>
<td>129.</td>
<td>1.04</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFC</td>
<td>227.0</td>
<td>6.70</td>
<td>203.</td>
<td>113.</td>
<td>113.</td>
<td>1.04</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFC</td>
<td>227.0</td>
<td>6.70</td>
<td>203.</td>
<td>112.</td>
<td>112.</td>
<td>1.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS11</td>
<td>126.0</td>
<td>6.05</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.06</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP10</td>
<td>317.0</td>
<td>6.10</td>
<td>214.</td>
<td>118.</td>
<td>118.</td>
<td>1.09</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS12</td>
<td>189.0</td>
<td>6.10</td>
<td>23.</td>
<td>10.</td>
<td>10.</td>
<td>0.15</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP11</td>
<td>506.0</td>
<td>6.10</td>
<td>237.</td>
<td>128.</td>
<td>128.</td>
<td>1.25</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFB</td>
<td>247.0</td>
<td>7.25</td>
<td>226.</td>
<td>125.</td>
<td>125.</td>
<td>1.25</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFB</td>
<td>247.0</td>
<td>7.25</td>
<td>226.</td>
<td>125.</td>
<td>125.</td>
<td>1.25</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS13</td>
<td>122.0</td>
<td>6.05</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.06</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP11</td>
<td>289.0</td>
<td>6.10</td>
<td>235.</td>
<td>130.</td>
<td>130.</td>
<td>1.31</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP11</td>
<td>288.0</td>
<td>6.10</td>
<td>235.</td>
<td>130.</td>
<td>130.</td>
<td>1.31</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP5A</td>
<td>654.0</td>
<td>6.10</td>
<td>502.</td>
<td>267.</td>
<td>267.</td>
<td>2.66</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP5A</td>
<td>652.0</td>
<td>6.15</td>
<td>502.</td>
<td>266.</td>
<td>266.</td>
<td>2.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM1</td>
<td>107.0</td>
<td>6.10</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PM1</td>
<td>107.0</td>
<td>6.10</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM2</td>
<td>139.0</td>
<td>6.20</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.15</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM3</td>
<td>99.0</td>
<td>6.15</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.07</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>AP12</td>
<td>985.0</td>
<td>6.15</td>
<td>542.</td>
<td>285.</td>
<td>285.</td>
<td>2.93</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP12</td>
<td>975.0</td>
<td>6.20</td>
<td>542.</td>
<td>285.</td>
<td>285.</td>
<td>2.93</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PH4</td>
<td>180.0</td>
<td>6.05</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.11</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP13</td>
<td>1115.0</td>
<td>6.15</td>
<td>559.</td>
<td>293.</td>
<td>293.</td>
<td>3.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS1</td>
<td>90.0</td>
<td>6.05</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-CS1</td>
<td>90.0</td>
<td>6.10</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS2</td>
<td>254.0</td>
<td>6.00</td>
<td>29.</td>
<td>13.</td>
<td>13.</td>
<td>0.07</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS2</td>
<td>194.0</td>
<td>5.70</td>
<td>29.</td>
<td>13.</td>
<td>13.</td>
<td>0.07</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS2</td>
<td>194.0</td>
<td>5.70</td>
<td>29.</td>
<td>13.</td>
<td>13.</td>
<td>0.07</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP14</td>
<td>284.0</td>
<td>6.10</td>
<td>38.</td>
<td>17.</td>
<td>17.</td>
<td>0.12</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP14</td>
<td>284.0</td>
<td>6.10</td>
<td>38.</td>
<td>17.</td>
<td>17.</td>
<td>0.12</td>
</tr>
<tr>
<td>Hydrograph Location</td>
<td>RB-CS3</td>
<td>RB-DFCS3</td>
<td>AP15</td>
<td>RT-AP15</td>
<td>SB-CS4</td>
<td>SB-DFVC</td>
<td>AP16</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>6.05</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>0.05</td>
<td>123</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>RT-DFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-DFS</td>
<td>109.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFS</td>
<td>33.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-DFS</td>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-P3</td>
<td>24.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP22</td>
<td>145.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP22S</td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP22P</td>
<td>142.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP22P</td>
<td>142.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-F4</td>
<td>140.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFS</td>
<td>150.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP23</td>
<td>140.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP23S</td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP23P</td>
<td>140.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP23P</td>
<td>140.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-F5</td>
<td>140.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFS</td>
<td>175.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP24</td>
<td>175.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP24S</td>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP24P</td>
<td>167.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP24P</td>
<td>167.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-F6</td>
<td>167.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFS</td>
<td>104.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-F7</td>
<td>173.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RR-DFS</td>
<td>132.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP25</td>
<td>586.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP25S</td>
<td>125.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP25P</td>
<td>461.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>HYDROGRAPH AT</td>
<td>4</td>
<td>5.75</td>
<td>189.</td>
<td>151.</td>
<td>151.</td>
<td>0.46</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>AA-AP25P</td>
<td>SB-PM8</td>
<td>51</td>
<td>6.00</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.01</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>AP-DF#1</td>
<td>2809</td>
<td>6.10</td>
<td>927.</td>
<td>536.</td>
<td>536.</td>
<td>4.43</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DF#1</td>
<td>1147</td>
<td>6.65</td>
<td>816.</td>
<td>497.</td>
<td>497.</td>
<td>4.43</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>AP25S</td>
<td>125</td>
<td>5.85</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP25S</td>
<td>126</td>
<td>5.85</td>
<td>11</td>
<td>5</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP26</td>
<td>1147</td>
<td>6.65</td>
<td>820.</td>
<td>501.</td>
<td>501.</td>
<td>4.43</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP26</td>
<td>1146</td>
<td>6.65</td>
<td>819.</td>
<td>499.</td>
<td>499.</td>
<td>4.43</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM9</td>
<td>230</td>
<td>6.00</td>
<td>24</td>
<td>11</td>
<td>11</td>
<td>0.07</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP27</td>
<td>1162</td>
<td>6.65</td>
<td>832.</td>
<td>510.</td>
<td>510.</td>
<td>4.49</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM10</td>
<td>175</td>
<td>6.00</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RRDPM10</td>
<td>140</td>
<td>5.80</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PM10</td>
<td>140</td>
<td>5.85</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM11</td>
<td>149</td>
<td>6.00</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>AP24S</td>
<td>139</td>
<td>6.05</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP24S</td>
<td>158</td>
<td>6.10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>0.00</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>AP28</td>
<td>1207</td>
<td>6.30</td>
<td>871.</td>
<td>530.</td>
<td>530.</td>
<td>4.58</td>
</tr>
</tbody>
</table>
SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING
(FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PN2</td>
<td>MANE</td>
<td>0.60</td>
<td>305.91</td>
<td>363.89</td>
<td>2.28</td>
<td>3.00</td>
<td>305.05</td>
<td>366.00</td>
<td>2.28</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1812E+02**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1811E+02**
- **BASIN STORAGE=0.9474E-02**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP1</td>
<td>MANE</td>
<td>1.24</td>
<td>658.65</td>
<td>364.95</td>
<td>2.33</td>
<td>3.00</td>
<td>655.90</td>
<td>366.00</td>
<td>2.33</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.3896E+02**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.3892E+02**
- **BASIN STORAGE=0.4165E-01**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP2</td>
<td>MANE</td>
<td>0.39</td>
<td>863.87</td>
<td>365.94</td>
<td>2.44</td>
<td>3.00</td>
<td>863.86</td>
<td>366.00</td>
<td>2.45</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.5165E+02**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.5163E+02**
- **BASIN STORAGE=0.1718E-01**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PN4</td>
<td>MANE</td>
<td>0.57</td>
<td>233.36</td>
<td>363.74</td>
<td>2.24</td>
<td>3.00</td>
<td>231.29</td>
<td>366.00</td>
<td>2.24</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1362E+02**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1361E+02**
- **BASIN STORAGE=0.6878E-02**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP3</td>
<td>MANE</td>
<td>0.49</td>
<td>1282.79</td>
<td>366.16</td>
<td>2.46</td>
<td>3.00</td>
<td>1282.62</td>
<td>366.00</td>
<td>2.47</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.7679E+02**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.7676E+02**
- **BASIN STORAGE=0.3147E-01**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-DFG</td>
<td>MANE</td>
<td>3.00</td>
<td>250.28</td>
<td>396.00</td>
<td>2.69</td>
<td>3.00</td>
<td>250.28</td>
<td>396.00</td>
<td>2.69</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1051E+03**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1048E+03**
- **BASIN STORAGE=0.3794E+00**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-DFE</td>
<td>MANE</td>
<td>3.00</td>
<td>238.54</td>
<td>486.00</td>
<td>2.59</td>
<td>3.00</td>
<td>238.54</td>
<td>486.00</td>
<td>2.59</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1275E+03**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1275E+03**
- **BASIN STORAGE=0.1190E+00**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP4</td>
<td>MANE</td>
<td>1.35</td>
<td>308.77</td>
<td>367.20</td>
<td>2.53</td>
<td>3.00</td>
<td>306.89</td>
<td>366.00</td>
<td>2.53</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1349E+03**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1349E+03**
- **BASIN STORAGE=0.1055E+00**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-DFF</td>
<td>MANE</td>
<td>1.17</td>
<td>265.26</td>
<td>487.11</td>
<td>2.39</td>
<td>3.00</td>
<td>265.26</td>
<td>486.00</td>
<td>2.39</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT)

- **INFLOW=0.1350E+03**
- **EXCESS=0.0000E+00**
- **OUTFLOW=0.1349E+03**
- **BASIN STORAGE=0.1055E+00**
- **PERCENT ERROR= 0.0**

<table>
<thead>
<tr>
<th>STATION</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
<th>DT (MIN)</th>
<th>PEAK CFS</th>
<th>TIME TO PEAK (IN)</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-DFF</td>
<td>MANE</td>
<td>1.17</td>
<td>265.26</td>
<td>487.11</td>
<td>2.39</td>
<td>3.00</td>
<td>265.26</td>
<td>486.00</td>
<td>2.39</td>
</tr>
<tr>
<td>Station</td>
<td>Inflow</td>
<td>Excess</td>
<td>Outflow</td>
<td>Basin Storage</td>
<td>Percent Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-PN14</td>
<td>0.1591</td>
<td>0.0000</td>
<td>0.1590</td>
<td>0.5028</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>49.82</td>
<td>363.76</td>
<td>1.91</td>
<td>3.00</td>
<td>49.19</td>
<td>363.00</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>RT-AP5</td>
<td>0.2750</td>
<td>0.0000</td>
<td>0.2748</td>
<td>0.2765</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>367.94</td>
<td>366.60</td>
<td>2.35</td>
<td>3.00</td>
<td>367.91</td>
<td>369.00</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>RT-PS1</td>
<td>0.1689</td>
<td>0.0000</td>
<td>0.1687</td>
<td>0.1227</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.26</td>
<td>294.79</td>
<td>365.55</td>
<td>2.23</td>
<td>3.00</td>
<td>294.37</td>
<td>366.00</td>
<td>2.23</td>
<td></td>
</tr>
<tr>
<td>RT-DFD</td>
<td>0.1785</td>
<td>0.0000</td>
<td>0.1783</td>
<td>0.1984</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>98.97</td>
<td>408.74</td>
<td>2.20</td>
<td>3.00</td>
<td>98.96</td>
<td>400.00</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>RT-AP6</td>
<td>0.5470</td>
<td>0.0000</td>
<td>0.5465</td>
<td>0.5548</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.61</td>
<td>469.72</td>
<td>362.31</td>
<td>2.54</td>
<td>3.00</td>
<td>467.96</td>
<td>363.00</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>RT-AP7A</td>
<td>0.7973</td>
<td>0.0000</td>
<td>0.7957</td>
<td>0.1580</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.16</td>
<td>995.92</td>
<td>361.71</td>
<td>2.77</td>
<td>3.00</td>
<td>989.30</td>
<td>363.00</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>RT-DFC</td>
<td>0.1110</td>
<td>0.0000</td>
<td>0.1109</td>
<td>0.1485</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.46</td>
<td>227.20</td>
<td>401.82</td>
<td>2.51</td>
<td>3.00</td>
<td>227.19</td>
<td>402.00</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>RT-DFB</td>
<td>0.1390</td>
<td>0.0000</td>
<td>0.1390</td>
<td>0.2911</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>246.94</td>
<td>435.86</td>
<td>2.32</td>
<td>3.00</td>
<td>246.94</td>
<td>435.00</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>RT-AP11</td>
<td>0.1546</td>
<td>0.0000</td>
<td>0.1546</td>
<td>0.1657</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>288.73</td>
<td>366.31</td>
<td>2.30</td>
<td>3.00</td>
<td>288.12</td>
<td>366.00</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>RT-AP5A</td>
<td>0.1612</td>
<td>0.0000</td>
<td>0.1611</td>
<td>0.9914</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>653.30</td>
<td>369.60</td>
<td>2.32</td>
<td>3.00</td>
<td>652.11</td>
<td>369.00</td>
<td>2.32</td>
<td></td>
</tr>
</tbody>
</table>
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3298E+03 EXCESS=0.0000E+00 OUTFLOW=0.3288E+03 BASIN STORAGE=0.9628E+00 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-PM1</th>
<th>MANE</th>
<th>0.50</th>
<th>107.12</th>
<th>366.09</th>
<th>2.24</th>
<th>3.00</th>
<th>107.08</th>
<th>366.00</th>
<th>2.24</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.6448E+01 EXCESS=0.0000E+00 OUTFLOW=0.6446E+01 BASIN STORAGE=0.7579E-02 PERCENT ERROR= -0.1

<table>
<thead>
<tr>
<th>RT-AP12</th>
<th>MANE</th>
<th>1.65</th>
<th>979.76</th>
<th>371.25</th>
<th>2.25</th>
<th>3.00</th>
<th>974.98</th>
<th>372.00</th>
<th>2.25</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3527E+03 EXCESS=0.0000E+00 OUTFLOW=0.3516E+03 BASIN STORAGE=0.1159E+01 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-CS1</th>
<th>MANE</th>
<th>1.65</th>
<th>90.51</th>
<th>366.30</th>
<th>1.85</th>
<th>3.00</th>
<th>90.31</th>
<th>366.00</th>
<th>1.85</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5244E+01 EXCESS=0.0000E+00 OUTFLOW=0.5233E+01 BASIN STORAGE=0.2491E-01 PERCENT ERROR= -0.3

<table>
<thead>
<tr>
<th>RT-AP14</th>
<th>MANE</th>
<th>0.50</th>
<th>284.03</th>
<th>366.35</th>
<th>3.18</th>
<th>3.00</th>
<th>283.67</th>
<th>366.00</th>
<th>3.20</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2089E+02 EXCESS=0.0000E+00 OUTFLOW=0.2089E+02 BASIN STORAGE=0.2081E+01 PERCENT ERROR= -0.1

<table>
<thead>
<tr>
<th>RT-AP15</th>
<th>MANE</th>
<th>0.45</th>
<th>406.34</th>
<th>366.25</th>
<th>3.08</th>
<th>3.00</th>
<th>405.99</th>
<th>366.00</th>
<th>3.08</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2891E+02 EXCESS=0.0000E+00 OUTFLOW=0.2890E+02 BASIN STORAGE=0.2341E-01 PERCENT ERROR= -0.1

<table>
<thead>
<tr>
<th>RT-AP16</th>
<th>MANE</th>
<th>0.11</th>
<th>427.19</th>
<th>366.16</th>
<th>3.25</th>
<th>3.00</th>
<th>427.05</th>
<th>366.00</th>
<th>3.25</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.3973E+02 EXCESS=0.0000E+00 OUTFLOW=0.3973E+02 BASIN STORAGE=0.7924E-02 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-DFA</th>
<th>MANE</th>
<th>1.11</th>
<th>8.98</th>
<th>499.60</th>
<th>1.00</th>
<th>3.00</th>
<th>8.98</th>
<th>498.00</th>
<th>1.00</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7739E+01 EXCESS=0.0000E+00 OUTFLOW=0.7729E+01 BASIN STORAGE=0.9996E-02 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-AP17</th>
<th>MANE</th>
<th>0.82</th>
<th>141.10</th>
<th>367.03</th>
<th>1.35</th>
<th>3.00</th>
<th>140.17</th>
<th>366.00</th>
<th>1.35</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1605E+02 EXCESS=0.0000E+00 OUTFLOW=0.1603E+02 BASIN STORAGE=0.1607E-01 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-AP18</th>
<th>MANE</th>
<th>0.35</th>
<th>231.68</th>
<th>365.86</th>
<th>1.51</th>
<th>3.00</th>
<th>231.64</th>
<th>366.00</th>
<th>1.51</th>
</tr>
</thead>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2146E+02 EXCESS=0.0000E+00 OUTFLOW=0.2145E+02 BASIN STORAGE=0.8548E-02 PERCENT ERROR= 0.0

<table>
<thead>
<tr>
<th>RT-AP19</th>
<th>MANE</th>
<th>1.97</th>
<th>1748.21</th>
<th>370.93</th>
<th>2.23</th>
<th>3.00</th>
<th>1739.33</th>
<th>369.00</th>
<th>2.24</th>
</tr>
</thead>
</table>
Continuity Summary (AC-FT)

Example 1:
- **Inflow:** 0.4230E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.4220E+03
- **Basin Storage:** 0.1201E+01
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-F1p Mane</td>
<td>0.92</td>
<td>123.10</td>
<td>355.43</td>
<td>1.86</td>
<td>3.00</td>
<td>123.01</td>
<td>360.00</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Example 2:
- **Inflow:** 0.1179E+02
- **Excess:** 0.0000E+00
- **Outflow:** 0.1178E+02
- **Basin Storage:** 0.1000E+01
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-F1s Mane</td>
<td>0.75</td>
<td>108.57</td>
<td>369.00</td>
<td>-1.00</td>
<td>3.00</td>
<td>108.57</td>
<td>369.00</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

Example 3:
- **Inflow:** 0.1409E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.1409E+03
- **Basin Storage:** 0.0000E+00
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP22p Mane</td>
<td>1.35</td>
<td>260.35</td>
<td>359.10</td>
<td>11.05</td>
<td>3.00</td>
<td>260.20</td>
<td>360.00</td>
<td>11.05</td>
</tr>
</tbody>
</table>

Example 4:
- **Inflow:** 0.1605E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.1605E+03
- **Basin Storage:** 0.7076E+02
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP23p Mane</td>
<td>1.03</td>
<td>298.61</td>
<td>358.10</td>
<td>9.96</td>
<td>3.00</td>
<td>298.01</td>
<td>360.00</td>
<td>9.96</td>
</tr>
</tbody>
</table>

Example 5:
- **Inflow:** 0.1648E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.1648E+03
- **Basin Storage:** 0.7178E+02
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP23s Mane</td>
<td>0.30</td>
<td>43.63</td>
<td>361.50</td>
<td>-1.00</td>
<td>3.00</td>
<td>36.44</td>
<td>363.00</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

Example 6:
- **Inflow:** 0.1740E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.1740E+03
- **Basin Storage:** 0.7306E+02
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP25p Mane</td>
<td>0.96</td>
<td>461.40</td>
<td>344.51</td>
<td>7.55</td>
<td>3.00</td>
<td>461.12</td>
<td>345.00</td>
<td>7.55</td>
</tr>
</tbody>
</table>

Example 7:
- **Inflow:** 0.1870E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.1870E+03
- **Basin Storage:** 0.1510E+01
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-AP25s Mane</td>
<td>0.60</td>
<td>126.10</td>
<td>351.00</td>
<td>-1.00</td>
<td>3.00</td>
<td>126.10</td>
<td>351.00</td>
<td>-1.00</td>
</tr>
</tbody>
</table>

Example 8:
- **Inflow:** 0.6191E+03
- **Excess:** 0.0000E+00
- **Outflow:** 0.6167E+03
- **Basin Storage:** 0.2701E+01
- **Percent Error:** 0.0

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PN10 Mane</td>
<td>0.76</td>
<td>140.52</td>
<td>349.41</td>
<td>4.15</td>
<td>3.00</td>
<td>140.10</td>
<td>351.00</td>
<td>4.15</td>
</tr>
</tbody>
</table>
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1063E+02 EXCESS=0.0000E+00 OUTFLOW=0.1063E+02 BASIN STORAGE=0.4832E+02 PERCENT ERROR= 0.0

| RT-AP24S | NAME | 0.90 | 158.95 | 365.40 | -1.00 | 3.00 | 158.39 | 366.00 | -1.00 |

*** NORMAL END OF HEC-1 ***
HEC-1 MODEL OUTPUT
INTERIM CONDITION

• 5-YEAR STORM
This program replaces all previous versions of NEC-1 known as HEC1 (Jan 73), HEC1GS, HEC1DB, and HEC1KW.

The definitions of variables -RTIMP- and -RTIOR- have changed from those used with the 1973-style input structure. The definition of -AMSKK- on DSN-CARD was changed with revisions dated 28 Sep 81. This is the FORTRAN77 version.

New options: DBBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:READ STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL, LOSS RATE:GREEN AND AMPT INFILTRATION, KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM.
HEC-1 INPUT

*** FREE ***

*DIAGRAM

IT 3 0 0 300

IO 5

KK SB-IPN1

KM

KK RT-IPN1

KM

READ INPUT DATA

1 1 1 1

READ CHANNEL DATA

1 1 1 1

READ MATRIX DATA

1 1 1 1

READ OUTLET DATA

1 1 1 1

END OF INPUT

DD 2500 0.033 0.045

TRAP 100 15

KK SB-IPN2

KM

COMPUTE HYDROGRAPH FOR BASIN IPN2

BA .229

LS 0 62.0

UD .377

KK API11

KM

COMBINE ROUTED FLOW FROM BASIN IPN1 WITH FLOW FROM BASIN IPN2

HC 2
47 KK RT-API1
48 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API1 TO API2
49 RD 2600 .034 .045 TRAP 12 2.5

50 KK SB-IPN3
51 KM COMPUTE HYDROGRAPH FOR BASIN IPN3
52 BA .122
53 LS 0 63.3
54 UD .268

55 KK API2
56 KM COMBINE THE ROUTED FLOW FROM API1 WITH THE FLOW FROM BASIN IPN3
57 HC 2

58 KK RT-API2
59 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API2 TO API3
60 RD 1300 .026 .045 TRAP 30 4

61 KK SB-IPN4
62 KM COMPUTE HYDROGRAPH FOR BASIN IPN4
63 BA .142
64 LS 0 62.1
65 UD .198

66 KK API3
67 KM COMBINE THE ROUTED FLOW FROM API2 WITH THE FLOW FROM BASIN IPN4
68 HC 2

69 KK RT-API3
70 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API3 TO API4
71 RD 1600 .02 .045 TRAP 20 3

72 KK SB-IPN5
73 KM COMPUTE HYDROGRAPH FOR BASIN IPN5
74 BA .043
75 LS 0 62
76 UD .169
77 KM **
78 KM **LAND DOWNSTREAM OF THIS POINT ASSUMED TO BE FULLY DEVELOPED ****
79 KM ***

80 KK SB-PN9
81 KM COMPUTE HYDROGRAPH FOR BASIN PN9
82 BA .036
83 LS 0 72.8
84 UD .170

85 KK AP-4
86 KM COMBINE ROUTED FLOW FROM API3 WITH FLOW FROM BASINS IPN5 AND PN9
87 HC 3
88 KK RT-AP4
89 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP4
90 KM TO DETENTION FACILITY "E" AT THE COLLECTOR STREET CROSSING
91 RD 1400 .032 .045 TRAP 20 3

92 KK SB-PN11
93 KM COMPUTE HYDROGRAPH FOR BASIN PN11
94 BA 0.079
95 LS 0 76.7
96 UD .189

97 KK SB-PN12
98 KM COMPUTE HYDROGRAPH FOR BASIN PN12
99 BA 0.039
100 LS 0 68.2
101 UD .129

102 KK SB-PN13
103 KM COMPUTE HYDROGRAPH FOR BASIN PN13
104 BA 0.127
105 LS 0 74
106 UD .195

107 KK APDFE
108 KM COMBINE ROUTED FLOW RT-AP4 WITH FLOW FROM BASINS PN11, PN12, AND PN13
109 KM AT REGIONAL DETENTION FACILITY "E"
110 RC 4

111 KK RR-DFE
112 KM NOTE: THE INPUT POND VOLUME REFLECTS THE DESIGN POND VOLUME ON 7-23-98
113 KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 34" DIA OUTLET WITH
114 KM THE INVERT DEPRESSED 2' BELOW POND INVERT (INV EL=84). OUTLET Q ESTIMATED
115 KM WITH BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS
116 KM DISCHARGE ABOVE EL 100.3 INCLUDES FLOW OVER EMERGENCY SPILLWAY
117 KM SCALE 1
118 KO 3 1
119 RS 1 STOR 0
120 SV 0 0 1.25 3.91 6.93 10.31 14.07 18.24 22.83 27.87
121 SE 784 786 788 790 792 794 796 798 800 802
122 SQ 0 25 80 136 173 210 240 263 280 1431

123 KK RT-DFE
124 KM ROUTE THE OUTFLOW FROM DETENTION FACILITY "E" IN A STORM DRAIN TO AP-5
125 RD 1800 .025 .013 CIRC 4.5

126 KK SB-PN14
127 KM COMPUTE HYDROGRAPH FOR BASIN PN14
128 BA .027
129 LS 0 74.3
130 UD .157
131 KK RT-PN14
132 KM ROUTE FLOW FROM BASIN PN14 IN A STORM DRAIN TO AP5
133 RD 1400 .055 .013 CIRC 2
134 KK SB-PN15
135 KM COMPUTE HYDROGRAPH FOR BASIN PN15
136 BA .074
137 LS 0 72.7
138 UD .186
139 KK AP-5
140 KM COMBINE ROUTED FLOW RT-PN14 TO FLOW FROM BASIN PN15
141 HC 3
142 KK RT-AP5
143 KM ROUTE THE FLOW AT AP5 TO AP5A AT THE CONFLUENCE OF THE FLOWS FROM THE
144 KM NORTH AND SOUTH FORKS OF PINE CREEK
145 RD 400 .025 .013 CIRC 5
146 KM **
147 KM *** BEGIN CALCULATIONS FOR THE SOUTH FORK OF PINE CREEK WATERSHED***
148 KM **
149 KK SB-IPS1
150 KM COMPUTE HYDROGRAPH FOR BASIN IPS1
151 BA .147
152 LS 0 63.1
153 UD .395
154 KK RT-IPS1
155 KM ROUTE THE FLOW FROM BASIN IPS1 THROUGH BASIN IPS2 TO AP16
156 RD 2200 .027 .045 TRAP 10 20
157 KK SB-IPS2
158 KM COMPUTE HYDROGRAPH FOR BASIN IPS2
159 BA .104
160 LS 0 62.2
161 UD .368
162 KK SB-IPS3
163 KM COMPUTE HYDROGRAPH FOR BASIN IPS3
164 BA .109
165 LS 0 62
166 UD .250
167 KK RT-IPS3
168 KM ROUTE THE FLOW FROM BASIN IPS3 THROUGH BASIN IPS4 TO AP14
169 RD 3250 .033 .045 TRAP 10 15
170 KK SB-IPS4
171 KM COMPUTE HYDROGRAPH FOR BASIN IPS4
172 BA .166
173 LS 0 62
174 UD .305
HEC-1 INPUT

LINE ID........1........2........3........4........5........6........7........8........9........10

175 KK AP14
176 KM COMBINE THE ROUTED FLOW FROM BASIN IPS3 TO THE FLOW FROM BASIN IPS4
177 HC 2

178 KK RT-AP14
179 KM ROUTE THE FLOW FROM API4 THROUGH BASIN IPS5 TO API5
180 RD 3100 .029 .045 TRAP 10 35

181 KK SB-IPS5
182 KM COMPUTE HYDROGRAPH FOR BASIN IPS5
183 BA .134
184 LS 0 62.5
185 UD .302

186 KK AP15
187 KM COMBINE THE ROUTED FLOW FROM API4 TO THE FLOW FROM BASIN IPS5
188 HC 2

189 KK RT-AP15
190 KM ROUTE THE FLOW FROM API5 THROUGH IPS2 API6
191 RD 1700 .031 .045 TRAP 50 35

192 KK AP16
193 KM COMBINE THE ROUTED FLOW FROM API5 WITH THE ROUTED FLOW FROM BASIN IPS1
194 KM AND THE FLOW FROM BASIN IPS2 AT API6
195 HC 3

196 KK SB-PS10
197 KM COMPUTE HYDROGRAPH FOR BASIN PS10 (FULLY DEVELOPED CONDITION)
198 BA .058
199 LS 0 72.9
200 UD .160

201 KK APDPC
202 KM COMBINE FLOW AT FLOW FROM API6 WITH FLOW FROM BASIN PS10 IN REGIONAL
203 KM DETENTION FACILITY "C". THIS IS THE TOTAL INFLOW TO DETENTION FACILITY "C"
204 HC 2

205 KK RR-DFC
206 KM ROUTE THE FLOW THROUGH DETENTION FACILITY "C". ASSUME GRADING FOR THE
207 KM FULLY DEVELOPED CONDITION DETENTION POND IS COMPLETE BUT OUTFALL IS NOT
208 KM CONSTRUCTED SO POND FUNCTIONS AS A RETENTION POND.
209 KO 3 1 100
210 RS 1 STOR 0
211 SV 0 2.73 9.72 18.56 28.03 38.15 48.95 60.45 72.75 85.05
212 SV 99.66
213 SE 62 64 66 68 70 72 74 76 78 80
214 SE 82
215 SQ 0 0 0 0 0 0 0 0 0 0
216 SQ 0.10
LINE | 10......1......2......3......4......5......6......7......8......9......10

217 | KK SB-IPS6
218 | KM COMPUTE HYDROGRAPH FOR BASIN IPS6
219 | BA .132
220 | LS 0 62
221 | UD .352

222 | KK RT-IPS6
223 | KM ROUTE THE FLOW FROM BASIN IPS6 THROUGH BASIN IPS7 TO API7
224 | RD 4250 .028 .045 TRAP 25 10

225 | KK SB-IPS7
226 | KM COMPUTE HYDROGRAPH FOR BASIN IPS7
227 | BA .209
228 | LS 0 62.6
229 | UD .289

230 | KK API7
231 | KM COMBINE THE ROUTED FLOW FROM BASIN IPS6 WITH THE FLOW FROM BASIN IPS7
232 | HC 2

233 | KK RT-API7
234 | KM ROUTE THE FLOW FROM API7 TO API8
235 | RD 2300 .028 .045 TRAP 20 3

236 | KK SB-IPS8
237 | KM COMPUTE HYDROGRAPH FOR BASIN IPS8
238 | BA .088
239 | LS 0 62.7
240 | UD .265

241 | KK SB-IPS9
242 | KM COMPUTE HYDROGRAPH FOR BASIN IPS9 (ASSUMED 23 ACRES OF SAGEWOOD DEVELOPED)
243 | BA .059
244 | LS 0 73.9
245 | UD .165

246 | KK API8
247 | KM COMBINE THE ROUTED FLOW FROM API7 TO THE FLOW FROM BASINS IPS8 AND IPS9
248 | HC 3

249 | KK RT-API8
250 | KM ROUTE THE FLOW FROM DPI8 TO DPI9
251 | RD 1200 .025 .045 TRAP 20 3

252 | KKS8-IPS10
253 | KM COMPUTE HYDROGRAPH FOR BASIN IPS10 (YMCA SITE AND 16 ACRES OF EXISTING
254 | KM RESIDENTIAL DEVELOPMENT ASSUMED TO BE DEVELOPED)
255 | BA .122
256 | LS 0 71.5
257 | UD .176
HEC-1 INPUT

LINE

ID......1......2......3......4......5......6......7......8......9......10

258 KK API19
259 KM COMBINE THE ROUTED FLOW FROM API18 TO THE FLOW FROM BASIN IPS10
260 KM ALSO ADD THE OUTFLOW HYDROGRAPH FROM DETENTION FACILITY "C" (NO OUTFLOW)
261 KM TO PROVIDE CONTINUITY IN THE MODEL
262 HC 3

263 KK RT-AP19
264 KM ROUTE THE FLOW IN THE SOUTH FORK OF PINE CREEK FROM API19 TO DETENTION
265 KM FACILITY "B"
266 RD 3400 .027 .045 TRAP 20 3
267 KM ***
268 KM ***** DOWNSTREAM BASINS ASSUMED TO BE FULLY DEVELOPED ************
269 KM ***

270 KK SB-PS11
271 KM COMPUTE HYDROGRAPH FOR BASIN PS11
272 BA .056
273 LS 0 80.3
274 UD .172

275 KK SB-PS12
276 KM COMPUTE HYDROGRAPH FOR BASIN PS12
277 BA .153
278 LS 0 69.0
279 UD .233

280 KK APDFB
281 KM COMBINE THE ROUTED FLOW FROM API19 TO THE FLOW FROM BASINS IPS11 AND IPS12
282 KM AT DETENTION FACILITY "B". THIS IS THE TOTAL INTERIM CONDITION INFLOW TO
283 KM DETENTION FACILITY "B"
284 HC 3

285 KK RR-DFB
286 KM ROUTE FLOW THROUGH REGIONAL DETENTION POND "B"
287 KM THIS VOLUME REFLECTS THE DESIGN VOLUME PER PRELIMINARY PLANS ON 7-23-98
288 KM WITH 54" DIA OUTLET SET AT INVERT ELEV. 70.2. OUTLET Q ESTIMATED WITH
289 KM BUREAU OF PUBLIC ROADS NOMO GRAPH FOR INLET CONTROL OF CONCRETE PIPE
290 KM DISCHARGE ABOVE 87.6 INCLUDES FLOW OVER 80' LONG EMERGENCY SPILLWAY
291 KM SCALE 1
292 KD 3 1
293 RS 1 STOR 0
294 SV 0 0.06 1.17 3.30 5.82 8.73 12.07 15.85 20.07 23.60
295 SV 24.76 29.96
296 SE 71.2 72.0 74 76 78 80 82 84 86 87.6
297 SE 88 90
298 SQ 0 22 73 130 169 202 236 260 285 301
299 SQ 371 1222

300 KK RT-DFB
301 KM ROUTE FLOW 1000 LF NORTHWEST IN A STORM DRAIN FROM DETENTION FACILITY "B"
302 KM TO AP-11
303 RD 1000 .021 .013 CIRC 4.5
HEC-1 INPUT

LINE ID....1....2....3....4....5....6....7....8....9....10

304 KK SB-PS13
305 KM COMPUTE HYDROGRAPH FOR BASIN PS13
306 BA .065
307 LS 0 74.1
308 UD .149

309 KK AP11
310 KM COMBINE ROUTED FLOW RT-DF8 TO FLOW FROM BASIN PS13 AT AP11
311 HC 2

312 KK RT-AP11
313 KM ROUTE FLOW 600 LF NORTHWEST IN A STORM DRAIN FROM AP11 TO AP5A (THE
314 KM CONFLUENCE OF FLOWS FROM THE NORTH AND SOUTH FORKS OF PINE CREEK)
315 RD 600 .021 .013 CIRC 5

316 KK AP5A
317 KM COMBINE ROUTED FLOW AP5 (FLOW FROM THE NORTH FORK OF PINE CREEK) TO ROUTED
318 KM FLOW RT-AP11 (FLOW FROM THE SOUTH FORK OF PINE CREEK)
319 HC 2

320 KK RT-AP5A
321 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL 1300 FEET DOWN THE CHANNEL FROM
322 KM AP5A NEAR THE HISTORIC CONFLUENCE OF PINE CREEK TO AP12 AT THE CONFLUENCE
323 KM OF THE MAIN CHANNEL AND THE LEXINGTON DRIVE STORM DRAIN OUTFALL. USE AN
324 KM APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
325 RD 1300 .023 .045 TRAP 50 2

326 KK SB-PM1
327 KM COMPUTE HYDROGRAPH FOR BASIN PM1
328 BA .054
329 LS 0 78.5
330 UD .203

331 KK RT-PM1
332 KM ROUTE THE FLOW FROM BASIN PM1 1200 LF NORTH IN THE LEXINGTON DR. S.D. TO
333 KM PINE CREEK MAIN CHANNEL.
334 RD 1200 .08 .013 CIR 3.5

335 KK SB-PM2
336 KM COMPUTE HYDROGRAPH FOR BASIN PM2, AN AREA OF THE GOLF COURSE
337 BA .154
338 LS 0 66.0
339 UD .310

340 KK SB-PM3
341 KM COMPUTE HYDROGRAPH FOR BASIN PK3
342 BA .067
343 LS 0 73.5
344 UD .248
LINE ID......1.......2........3........4........5........6........7........8........9........10

345 KK AP12
346 KM COMBINE ROUTED FLOW RT-PM1 WITH THE ROUTED FLOW IN PINE CREEK MAIN CHANNEL
347 KM AND THE FLOW FROM BASINS PM2 AND PM3
348 HC 4
349 KK RT-AP12
350 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP12 NEAR THE
351 KM OUTFALL OF LEXINGTON DRIVE STORM DRAIN TO THE CROSSING AT CHAPEL HILLS DRIVE
352 KM USE AN APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
353 RD 1600 0.018 0.045 TRAP 30 2
354 KK SB-PM4
355 KM COMPUTE HYDROGRAPH FOR BASIN PM4
356 BA 0.111
357 LS 0 71.9
358 UD 0.170
359 KK AP13
360 KM COMBINE FLOW FROM BASIN PM4 TO THE ROUTED FLOW RT-AP12 IN PINE CREEK MAIN
361 KM CHANNEL ON THE EAST SIDE OF THE CHAPEL HILLS DRIVE CROSSING
362 HC 2
363 KM ***
364 KM ****BEGIN SOUTH CHAPEL HILLS DRIVE STORM DRAIN WATERSHED***
365 KM ***
366 KK SB-CS1
367 KM COMPUTE HYDROGRAPH FOR BASIN CS1
368 BA 0.053
369 LS 0 73.6
370 UD 0.181
371 KK RT-CS1
372 KM ROUTE FLOW 1300 LF WEST IN DYNAMIC DR. ASSUME BULK OF FLOW IS ON THE SURFACE
373 RD 1300 0.021 0.013 TRAP 32 .01
374 KK SB-CS2
375 KM COMPUTE HYDROGRAPH FOR BASIN CS1
376 BA 0.070
377 LS 0 98.0
378 UD 0.101
379 KKRR-DFCS2
380 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION OF 1.6cfs
381 KM /ACRE FROM THE I/O PROPERTY AS ASSUMED IN THE MDP FOR BRIARGATE BUSINESS
382 KM CAMPUS. BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
383 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE AT
384 KM THE POND TO REFLECT POTENTIAL FREE DISCHARGE FROM A PORTION OF THE SUBBASIN
385 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 37ac=60 cfs
386 RS 1 STOR 0
387 SV 0 0.001 6 10
388 SE 100 102 104 106
389 SQ 0 194 194 194
LINE
ID....1....2....3....4....5....6....7....8....9....10

390 KK AP14
391 KM COMBINE ROUTED FLOW RT-CS1 TO CONTROLLED FLOW FROM BASIN CS2 AT THE
392 KM INTERSECTION OF CHAPEL HILLS DR. AND DYNAMIC DR.
393 HC 2
394 KK RT-AP14
395 KM ROUTE FLOW 1100 LF NORTH IN THE CHAPEL HILLS DR. S.D. TO BRIARGATE PKWY.
396 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
397 KM OF THE STORM DRAIN BETWEEN DYNAMIC DRIVE AND BRIARGATE PARKWAY. SOME OF
398 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE.
399 RD 1100 .02 .013 CIR 4

400 KK SB-CS3
401 KM COMPUTE HYDROGRAPH FOR BASIN CH3
402 BA .053
403 LS 0 84.8
404 UD .177

405 KKRR-DFCS3
406 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION REDUCING
407 KM THE PEAK 100YR FLOW RATE FROM THE 9 ACRES OF THE BASIN THAT ARE DESIGNATED
408 KM AS L/R USE AS ASSUMED IN MODD FOR BRIARGATE BUSINESS CAMPUS.
409 KM BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
410 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE
411 KM AT THE POND TO REFLECT FREE DISCHARGE FROM A PORTION OF THE SUB BASIN.
412 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs x 9=14 cfs
413 RS 1 STOR 0
414 SV 0 .001 6 10
415 SE 100 102 104 106
416 SQ 0 123 123 123

417 KK AP15
418 KM COMBINE ROUTED FLOW RT-AP14 WITH CONTROLLED FLOW FROM BASIN CS3 AT THE
419 KM INTERSECTION OF CHAPEL HILLS DR. AND BRIARGATE PARKWAY. NOTE A SMALL PORTION
420 KM OF BASIN CS3 IS LOCATED DOWNSTREAM OF THIS POINT. FOR THIS MODELING PURPOSE
421 KM THIS IS CONSIDERED INSIGNIFICANT.
422 HC 2

423 KK RT-AP15
424 KM ROUTE FLOW 1400 LF NORTH IN THE CHAPEL HILLS DR. S.D.
425 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
426 KM OF THE STORM DRAIN BETWEEN BRIARGATE PARKWAY AND PINE CREEK. SOME OF
427 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE. A SMALL PORTION OF
428 KM THE SURFACE FLOW MAY BE DIVERTED DOWN BRIARGATE PARKWAY, BUT FOR THE PURPOSE
429 KM OF THIS ANALYSIS ALL OF THE FLOW FROM THE CHAPEL HILLS DRIVE/BRIARGATE PKY.
430 KM INTERSECTION IS ASSUMED TO REACH PINE CREEK AT CHAPEL HILLS DRIVE.
431 RD 1400 .045 .013 CIR 4.5

432 KK SB-CS4
433 KM COMPUTE HYDROGRAPH FOR BASIN CS4
434 BA .053
435 LS 0 95.5
436 UD .101
437 KK RR-DFVC
438 KM ROUTE FLOW THRU THE PROPOSED VILLAGE CENTER DETENTION FACILITY
439 KM POND GRADING PER THE PRELIMINARY GRADING SHOWN IN THE MDDP FOR VILLAGE
440 KM CENTER. DISCHARGE ASSUMES USE OF THE EXISTING 18" DIAMETER STUB.
441 KM WITH THE INVERT SET AT ELEVATION 73. BUREAU OF PUBLIC ROADS NOMOGRAPH
442 KM USED TO ESTIMATE OUTFLOW RATES ASSUMING INLET CONTROL.
443 RS 1 STOR 0
444 SV 000 .032 1.67 3.23 5.00 7.00
445 SE 73 74 76 78 80 82
446 SQ 0 3 13 17 20 22

447 KK AP16
448 KM COMBINE ROUTED FLOW RT-AP15 WITH THE DISCHARGE FROM THE VILLAGE CENTER POND
449 WC 2

450 KK RT-AP16
451 KM ROUTE THE FLOW IN THE CHAPEL HILLS DRIVE STORM DRAIN FROM AP16 TO AP19 IN
452 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
453 KM CROSSING
454 RD 300 .03 .013 CIR 4.5
455 KM ***
456 KM ***
457 KM ***

458 KK SB-CN1
459 KM COMPUTE RUNOFF FROM BASIN CN1 THE WATERSHED CONTRIBUTING TO THE PARK SITE AT
460 KM CHAPEL HILLS DRIVE POND (REGIONAL DETENTION FACILITY "A").
461 BA .145
462 LS 0 76.8
463 UD .190

464 KK RR-DFA
465 KM ROUTE THE FLOW FROM CN1 THROUGH THE PROPOSED DETENTION POND AT THE PARK
466 KM SITE AT CHAPEL HILLS DRIVE. STAGE STORAGE CURVE PER THE 12/22/97 GRADING PLAN
467 KM DISCHARGE CURVE REFLECTS 12" DIAMETER OUTLET PIPE CONTROL FOR NORMAL DISCHARG
468 KM AND A 100' LONG EMERGENCY SPILLWAY SET AT ELEVATION 6805.5
469 KO 3 1 100
470 RS 1 STOR 0
471 SV 0 .01 .22 .99 1.95 2.80 4.25 5.31 6.51 11.64
472 SV 15.36
473 SQ 2.35 2.54 3.00 3.73 4.35 4.75 5.36 5.50 8.39 9.01
474 SQ 279
475 SE 6796.6 6797.0 6798.0 6800.0 6802.0 6803.5 6803.51 6804 6804.1 6805.5
476 SE 6806.5

477 KK RT-DFA
478 KM ROUTE OUTFLOW FROM REGIONAL DETENTION POND "A" DOWN THE CHAPEL HILLS STORM
479 KM DRAIN FROM LEXINGTON DRIVE TO TREELAKE DRIVE
480 RD 930 .04 .013 CIRC 1.5
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10

481 KK SB-CN2
482 KM COMPUTE RUNOFF FROM BASIN CN2
483 BA 0.078
484 LS 0 75.5
485 UD 0.214

486 KK AP17
487 KM COMBINE ROUTED FLOW RT- DFA AND FLOW FROM BASIN CN2 AT THE INTERSECTION OF
488 KM CHAPEL HILLS DRIVE AND TREELAKE DRIVE
489 RC 2

490 KK RT-AP17
491 KM ROUTE FLOW AT AP17 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO MULLIGAN DR.
492 RD 1400 0.05 0.013 CIRC 3.5

493 KK SB-CN3
494 KM COMPUTE RUNOFF FROM BASIN CN3
495 BA 0.043
496 LS 0 80.0
497 UD 0.157

498 KK AP18
499 KM COMBINE ROUTED FLOW RT-AP17 TO FLOW FROM BASIN CN3 AT INTERSECTION OF CHAPEL
500 KM HILLS DR. AND MULLIGAN DR.
501 RC 2

502 KK RT-AP18
503 KM ROUTE FLOW AT AP18 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO AP19 IN THE
504 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
505 KM CROSSING. NOTE A SMALL PORTION OF BASIN CHN3 IS LOCATED SOUTH OF AP18. THIS
506 KM IS CONSIDERED INSIGNIFICANT FOR THE PURPOSE OF THIS ANALYSIS.
507 RD 600 0.04 0.013 CIRC 3.5

508 KK AP19
509 KM COMBINE ROUTED FLOW RT-AP18 FROM THE NORTH CHAPEL HILLS DR. STORM DRAIN
510 KM WITH THE ROUTED FLOW RT-AP16 FROM THE SOUTH CHAPEL HILLS DRIVE STORM DRAIN
511 KM AND THE FLOW IN PINE CREEK MAIN CHANNEL (AP13) AT THE WEST SIDE OF THE CHAPEL
512 KM HILLS DRIVE CROSSING. FLOW THAT IS TAKEN INTO THE PINE CREEK CHANNEL FORM THE
513 KM STREET AT THIS POINT HAS BEEN ACCOUNTED FOR IN BASINS CN3 AND CS3. THIS WAS
514 KM DONE TO REDUCE THE COMPLEXITY OF THE MODEL.
515 RC 3

516 KK RT-AP19
517 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL FROM AP19 AT THE CHAPEL HILLS DRIVE
518 KM CROSSING TO AP20 AT REGIONAL DETENTION FACILITY 1 AT BRIARGATE PARKWAY AND
519 KM HIGHWAY 83. USE AVERAGE SLOPES AND APPROXIMATE CROSS SECTIONS FOR ROUTING.
520 RD 750 0.035 .045 TRAP 30 2
521 RD 1000 0.025 0.045 TRAP 120 2
522 RD 1400 0.026 0.045 TRAP 60 2
HEC-1 INPUT

LINE ID........1........2........3........4........5........6........7........8........9........10

523 KK SB-PM5
524 KM COMPUTE HYDROGRAPH FOR BASIN PM5
525 BA .183
526 LS 0 70.0
527 UD .165

528 KK AP20
529 KM COMBINE FLOW FROM BASIN PM6 WITH THE ROUTED FLOW IN PINE CREEK
530 HC 2

531 KK SB-PM6
532 KM COMPUTE HYDROGRAPH FOR PM6 THE AREA BETWEEN CHAPEL HILLS DR. AND DETENTION
533 KM FACILITY 1 BOUNDED BY THE GOLF COURSE AND BRIARGATE PARKWAY. NOTE: THE MDDP
534 KM FOR BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN THIS SUBBASIN. FOR THE
535 KM PURPOSE OF THIS ANALYSIS NO DETENTION IS ASSUMED TO ALLOW THE DEVELOPER THE
536 KM OPTION OF CONSTRUCTING LARGER CONVEYANCE FACILITIES TO DETENTION FACILITY
537 KM NO. 1 AND ALLOWING FREE DISCHARGE FROM THE BASIN.
538 BA .088
539 LS 0 96
540 UD .110

541 KK AP21
542 KM COMBINE FLOW FROM PM6 WITH THE FLOW IN PINE CREEK AT AP21 FOR THE TOTAL FLOW
543 KM IN PINE CREEK CHANNEL AS IT ENTERS DETENTION FACILITY No 1
544 HC 2

545 KK SB-PM7
546 KM COMPUTE HYDROGRAPH FOR BASIN PM7 THE AREA NORTH OF DETENTION FACILITY 1
547 KM NOTE: THE MDDP FOR THE BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN
548 KM THE NON RESIDENTIAL PORTIONS OF THIS AREA. FOR THE PURPOSE OF THIS ANALYSIS
549 KM FREE DISCHARGE FROM THE BASIN IS ASSUMED. THE RESIDENTIAL PORTION OF THE
550 KM BASIN LOCATED OUTSIDE THE CITY LIMITS IS ASSUMED TO BE FULLY DEVELOPED
551 KM AS 1 DU PER ACRE RESIDENTIAL.
552 BA .138
553 LS 0 76.3
554 UD .353

555 KM ***
556 KM ***
557 KM ***
558 KK SB-F1
559 KM COMPUTE HYDROGRAPH FOR BASIN F1
560 BA .119
561 LS 0 78.3
562 UD .208

563 KK RT-F1P
564 KM ROUTE FLOW IN THE STORM DRAIN 1300 LF WEST FROM THE SAG PT. IN LEXINGTON
565 KM DRIVE TO SUMMER FIELD POND
566 RD 1300 .036 .013 CIRC 3
HEC-1 INPUT

LINE

10.1.2.3.4.5.6.7.8.9.10

567 KK SB-F2
568 KM COMPUTE HYDROGRAPH FOR BASIN F2
569 BA .039
570 LS 0 74
571 UD .171

572 KK AP-DFS
573 KM COMBINE ROUTED FLOW RT-F1P WITH FLOW FROM F2 AT THE SUMMER
574 KM FIELD POND. THIS IS THE TOTAL FLOW TO THE POND
575 HC 2

576 KK RR-DFS
577 KM ROUTE THE FLOW AT AP-DFSF THROUGH THE SUMMER FIELD DETENTION BASIN.
578 KM THE INFLOW/OUTFLOU S.D. FOR THIS FACILITY IS BURIED BELOW THE POND BOTTOM.
579 KM THE POND FILLS WHEN THE CAPACITY OF THE DOWNSTREAM REACH OF S.D. IS
580 KM EXCEEDED. THIS CONFIGURATION PRESENTS A COMPLEX HYDRAULIC PROBLEM. IT IS
581 KM ASSUMED THAT UNTIL INFLOW >120cfs FLOW WILL PASS THROUGH THE STORM DRAIN.
582 KM WHEN INFLOW > 120cfs BACKWATER WILL FORM AT THE OUTLET AND THE LID ON THE
583 KM UPSTREAM MANHOLE WILL LIKELY BE LIFTED OFF AND SOME FLOW WILL ENTER THE POND
584 KM FROM THAT POINT. WHEN INFLOW>120cfs IT IS ASSUMED THAT THE HEAD LOSS AT
585 KM THE OUTLET WILL BE APPROXIMATELY 1*VELOCITY HEAD FOR THE PURPOSE OF
586 KM CALCULATING THE DISCHARGE CURVE.
587 KM NOTE: THE OUTFLOW CURVE WAS MODIFIED IN THIS MODEL TO ALLOW THE 5 YEAR
588 KM STORM TO RUN. AT ELEV. 92 SQ OF 80 WAS SUBSTITUTED FOR 120. THIS CHANGE
589 KM IS CONSIDERED INSIGNIFICANT AT THE 5 YEAR Q
590 KO 3 1 100
591 RS 1 STOR 0
592 SV 0 0.57 4.63 6.87 10.32
593 SE 92 94 96 98 100
594 SQ 80 126 131 137 144

595 KK RT-DFS
596 KM ROUTE OUTFLOW FROM THE DETENTION BASIN IN A 48h S.D. TO RESEARCH PKWY.
597 RD 800 .018 .013 CIRC 4

598 KK SB-F3
599 KM COMPUTE HYDROGRAPH FOR BASIN F3
600 BA .114
601 LS 0 77.0
602 UD .215

603 KK AP22
604 KM COMBINE ROUTED FLOW RT-DFSF TO FLOW FROM BASIN F3 AT THE INTERSECTION OF
605 KM RESEARCH PARKWAY AND SUMMERSET DRIVE.
606 HC 2

607 KKRT-AP22P
608 KM ROUTE THE S.D.FLOW FROM THE BRIARGATE PKWY/ SUMMERSET INTERSECTION TO THE
609 KM INTERSECTION OF RESEARCH PKWY, AND CHAPEL HILLS DR.
610 RD 2100 .02 .013 CIRC 5
LINE

611 KK SB-F4
612 KM COMPUTE HYDROGRAPH FOR BASIN F4
613 BA .038
614 LS 0 83.0
615 UD .197

616 KK RR-DFF4
617 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
618 KM RATE OF 1.6 CFS/ACRE FROM THE 11.5 AC THAT WILL BE DEVELOPED AS LI/O
619 KM DISCHARGE REDUCTION PER ACRE IS DETERMINED PER THE RATE AND AREA INCLUDED
620 KM IN THE NDDP FOR BRIARGATE BUSINESS CAMPUS
621 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
622 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE SITE WILL LIKELY
623 KM FREE DISCHARGE TO THE ADJACENT STREET
624 KM DISCHARGE REDUCTION = LI/O AREA (acres)\(\times 1.6\) cfs = 18.4 cfs
625 RS 1 STOR 0
626 SV 0 .001 6 10
627 SE 100 102 104 106
628 SQ 0 70.6 70.6 70.6

629 KK AP23
630 KM COMBINE ROUTED FLOW RT-AP22P TO FLOW FROM BASIN F4 AT THE INTERSECTION OF
631 KM RESEARCH PARKWAY AND CHAPEL HILLS DR.
632 HC 2

633 KKRT-AP23P
634 KM ROUTE THE FLOW IN THE STORM DRAIN FROM THE RESEARCH PKWY/CHAPEL HILLS DR.
635 KM INTERSECTION TO THE INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE
636 KM FAMILY S.D.
637 RD 2100 .044 .013 CIRC 4

638 KK SB-F5
639 KM COMPUTE HYDROGRAPH FOR BASIN F5
640 BA .064
641 LS 0 95.5
642 UD .121

643 KK RR-DFF5
644 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
645 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
646 KM AND HISTORIC PEAK 100 YR FLOW RATE PER THE ORIGINAL DBPS CRITERIA FOR LI/O
647 KM LAND USE. HISTORIC 100 YR PEAK ESTIMATED AT 1.5 CFS/AC. FULLY DEVELOPED 100
648 KM YR PEAK ESTIMATED AT 5.6 CFS/AC. ESTIMATED REQUIRED DETENTION =
649 KM \((5.6-1.5)\)*,35*35AC=50cfs TOTAL Qin=225cfs
650 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
651 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
652 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
653 RS 1 STOR 0
654 SV 0 .001 6 10
655 SE 100 102 104 106
656 SQ 0 175 175 175
LINE

ID........1........2........3........4........5........6........7........8........9........10

657 KK AP24
658 KM COMBINE THE ROUTED FLOW IN THE S.D. (RTAP102) TO FLOW FROM FF1
659 HC 2

660 KKRT-AP24P
661 KM ROUTE THE FLOW IN THE FOCUS STORM DRAIN FROM AP24 AT THE INTERSECTION OF
662 KM EXPLORER DRIVE AND THE FOCUS S.D. TO AP25 AT THE INTERSECTION OF EXPLORER
663 KM DRIVE & BRIARGATE PKWY
664 RD 800 .011 .013 CIRC 5.5

665 KK SB-F6
666 KM COMPUTE HYDROGRAPH FOR BASIN F6
667 BA .038
668 LS 0 98.0
669 UD .106

670 KK RR-DF6
671 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
672 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
673 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
674 KM FULLY DEVELOPED ESTIMATED AT 5.0 CFS/AC. ESTIMATED REQUIRED DETENTION =
675 KM (6.0-1.5)*.35*21.5AC=34cfs TOTAL Qin=138cfs
676 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
677 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
678 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
679 RS 1 STOR 0
680 SV 0 .001 6 10
681 SE 100 102 104 106
682 SQ 0 104 104 104

683 KK SB-F7
684 KM COMPUTE HYDROGRAPH FOR BASIN F7
685 BA .052
686 LS 0 93.0
687 UD .137

688 KK RR-DF7
689 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
690 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
691 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
692 KM FULLY DEVELOPED ESTIMATED AT 5.2 CFS/AC. ESTIMATED REQUIRED DETENTION =
693 KM (5.2-1.5)*.35*29AC=38cfs TOTAL Qin=170cfs
694 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
695 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
696 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
697 RS 1 STOR 0
698 SV 0 .001 6 10
699 SE 100 102 104 106
700 SQ 0 132 132 132
HEC-1 INPUT

LINE

ID........1........2........3........4........5........6........7........8........9........10

701 KK AP25
702 KM COMBINE ROUTED FLOW RT-AP25P TO CONTROLLED FLOW FROM BASINS F6 AND F7
703 KM AT THE INTERSECTION OF EXPLORER DR AND BRIARGATE PKWY.
704 HC 3

705 XXRT-AP25P
706 KM ROUTE THE FLOW IN THE S.D. FROM THE INTERSECTION OF EXPLORER DR. & BRIARGATE
707 KM PARKWAY TO DETENTION FACILITY 1 AT BRIARGATE PKWY & HIGHWAY 83
708 RD 1250 0.011 0.013 CIRC 5.5

709 XX S9-PMB
710 KM COMPUTE HYDROGRAPH FOR BASIN PMB THE PORTION OF BRIARGATE PARKWAY BETWEEN
711 KM EXPLORER DR. AND HIGHWAY 83
712 BA 0.014
713 LS 0 98
714 UD 0.100

715 XX AP-DF#1
716 KM ADD THE FLOW FROM THE FOCUS ON THE FAMILY STORM DRAIN, BASINS P7 AND P8,
717 KM AND FLOW IN PINE CREEK FOR THE TOTAL INFLOW TO DETENTION FACILITY 1
718 HC 4

719 XX RR-DF#1
720 KM ROUTE FLOW THRU DETENTION FACILITY NO.1. VOLUME MODIFIED TO REFLECT PROPOSED
721 KM ENLARGEMENT. PROPOSED ENLARGEMENT IS TO ADD A MINIMUM OF 0.7 ACRES OF SURFACE
722 KM AREA TO EACH OF THE CONTOURS AT OR ABOVE ELEVATION 58. OUTLET MODELED
723 KM ASSUMING THE TOP 7.5' OF THE ENTRANCE TO THE 10'X 12' HIGH BOX CULVERT IS
724 KM BLOCKED AND A NEW 12' WIDE OPENING IS CREATED W/ INVERT AT 67.2
725 KM OUTFLOW CURVE CALCULATED WITH A SPREADSHEET TREATING THE LOWER OPENING AS
726 KM A SUBMERSED ORIFICE WITH C=.60, h=POND DEPTH - NORMAL DEPTH IN THE OUTFALL
727 KM AND THE UPPER OPENING TO ELEVATION 73.0 TREATED AS A SHARP CRESTED WEIR WITH
728 KM A FULL LENGTH OF 12.77' (THE SKEW LENGTH) ADJUSTED 0.2h FOR END CONTRACTIONS
729 KM AND C=3.22+0.40(h/P) WHERE P=14.2. ABOVE ELEVATION 73.0 THE TOP OUTLET
730 KM STRUCTURE IS ASSUMED TO TERMINATE WITHOUT A TOP AND THUS ADDITIONAL FLOW CAN
731 KM OVER TOP THE SIDES AND BACK OF THE ASSUMED 3 SIDED STRUCTURE 12.77 X 10
732 KO 3
733 RS 1 STOR 0
734 SA 0 0.18 0.48 4.83 5.23 5.52 5.83 6.13 6.44 6.78
735 SA 7.14 7.34 7.53 7.73 7.95
736 SE 54.0 55.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0
737 SE 72.0 73.0 74.0 75.0 76.0
738 SQ 0 105 194 275 344 401 451 496 560 747
739 SQ 998 1142 1247 1750 2100

740 XX RT-AP26
741 KM ROUTE THE COMBINED FLOW FROM AP26 AT BRIARGATE PARKWAY DOWN PINE CREEK TO
742 KM THE INTERSECTION OF PINE CREEK AND HIGHWAY 83. USE AVERAGE
743 KM APPROXIMATE SECTION AND SLOPE FOR ROUTING
744 RD 1450 0.019 0.045 TRAP 40 2
ID...1...2...3...4...5...6...7...8...9...10

745 KK SB-PM9
746 KM COMPUTE HYDROGRAPH FOR BASIN PM9
747 BA .068
748 LS 0 93
749 UD .120

750 KK AP27
751 KM COMBINE THE FLOW FROM BASIN PM9 AND THE ROUTED FLOW IN PINE CREEK (RT-AP26) AT
752 KM THE UPSTREAM SIDE OF HIGHWAY 83.
753 HC 2

754 KK SB-PM10
755 KM COMPUTE HYDROGRAPH FOR BASIN PM10
756 BA .048
757 LS 0 98
758 UD .092

759 KKRDFPM10
760 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
761 KM RATE TO THE APPROXIMATE PEAK FLOW RATE DISCHARGE GOAL FROM THE BASIN
762 KM AS SHOWN IN THE FINAL DRAINAGE REPORT FOR BRIARGATE BUSINESS CAMPUS
763 KM FILING 13 AS APPROVED OCT 31, 1996
764 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
765 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN MAY DISCHARGE
766 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN.
767 KM DISCHARGE FROM THE BASIN PER THE FINAL DRAINAGE REPORT=140 cfs
768 RS 1 STOR 0
769 SV 0 001 .6 1.5
770 SE 100 102 104 106
771 SQ 0 140 140 140

772 KK RT-PM10
773 KM ROUTE THE FLOW IN THE S.D. FROM THE LOW POINT IN TELESTAR DR. TO THE EXISTING
774 KM OUTFALL TO PINE CREEK JUST UPSTREAM OF HIGHWAY 83.
775 RD 1000 .025 .013 CIRC 4.0

776 KK SB-PM11
777 KM COMPUTE HYDROGRAPH FOR BASIN PM11
778 BA .041
779 LS 0 98
780 UD .096

781 KK AP28
782 KM COMBINE THE FLOW FROM BASIN PM11 WITH THE FLOW IN PINE CREEK AT AP27,
783 KM AND THE ROUTED FLOW FROM BASIN PM10. FLOW IS COMBINED IN PINE CREEK AT
784 KM THE UPSTREAM SIDE OF THE BOX CULVERT UNDER HIGHWAY 83. THIS REPRESENTS THE
785 KM TOTAL FLOW TO PINE CREEK FROM THE BRIARGATE AREA
786 KO 3 1
787 HC 3
788 ZZ
SCHEMATIC DIAGRAM OF STREAM NETWORK

INPUT LINE

<table>
<thead>
<tr>
<th>NO.</th>
<th>(.) CONNECTOR</th>
<th>(-->) DIVERSION OR PUMP FLOW</th>
<th>(<--) RETURN OF DIVERTED OR PUMPED FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>SB-IPN1</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>36</td>
<td>RT-IPN1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>39</td>
<td>SB-IPN2</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>44</td>
<td>API1</td>
<td>.........</td>
<td>V</td>
</tr>
<tr>
<td>47</td>
<td>RT-API1</td>
<td>.</td>
<td>V</td>
</tr>
<tr>
<td>50</td>
<td>SB-IPN3</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>55</td>
<td>API2</td>
<td>.........</td>
<td>V</td>
</tr>
<tr>
<td>58</td>
<td>RT-API2</td>
<td>.</td>
<td>V</td>
</tr>
<tr>
<td>61</td>
<td>SB-IPN4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>66</td>
<td>API3</td>
<td>.........</td>
<td>V</td>
</tr>
<tr>
<td>69</td>
<td>RT-API3</td>
<td>.</td>
<td>V</td>
</tr>
<tr>
<td>72</td>
<td>SB-IPN5</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>80</td>
<td>SB-PN9</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>85</td>
<td>AP-4</td>
<td>.........</td>
<td>V</td>
</tr>
<tr>
<td>88</td>
<td>RT-AP4</td>
<td>.</td>
<td>V</td>
</tr>
<tr>
<td>92</td>
<td>SB-PN11</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>97</td>
<td>SB-PN12</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>102</td>
<td>SB-PN13</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Line</td>
<td>Text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>APDFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>RR-DFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>RT-DFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>SB-PN14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>RT-PN14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>SB-PN15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>AP-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>RT-AP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>SB-IPS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>RT-IPS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>SB-IPS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>SB-IPS3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>RT-IPS3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>SB-IPS4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>API4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>RT-API4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>SB-IPS5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>API5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>RT-API5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>API6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

405 . . . RR-DFCS3
417 . . . AP15
423 . . . RT-AP15
432 . . . SB-CS4
437 . . . RR-DFVC
447 . . . AP16
450 . . . RT-AP16
458 . . . SB-CN1
464 . . . RR-DFA
477 . . . RT-DFA
481 . . . SB-CN2
486 . . . AP17
490 . . . RT-AP17
493 . . . SB-CN3
498 . . . AP18
502 . . . RT-AP18
508 . . . AP19
516 . . . RT-AP19
523 . . . SB-PM5
528 . . . AP20
665
. . . SB-F6
. . . V
. . . V
670
. . . RR-DF6
. . .
683
. . . SB-F7
. . . V
. . . V
688
. . . RR-DF7
. . .
701
. . AP25
. . V
. . V
705
. . RT-AP25P
. . .
709
. . SB-PM8
. . .
715
AP-DF1
V
V
719
RR-DF1
V
V
740
RT-AP26
.
745
. SB-PM9
.
750
AP27
.
.
754
. SB-PM10
. V
. V
759
RRDFPM10
. V
. V
772
RT-PM10
.
.
776
. SB-PM11
.
.
781
AP28
.

(*** RUNOFF ALSO COMPUTED AT THIS LOCATION)
PINE CREEK DRAINAGE BASIN - 24HR, (TYPE IIa5 YEAR STORM)
FILE PCDBPSI5.DAT
INTERIM CONDITION MODEL
MODEL MODIFIED FOR 8-98 REVISION LAST UPDATE: 8/5/98
BASINS PN1 THROUGH PN8, PN10, AND PS1 THROUGH PS9 IN UNDEVELOPED OR
PARTIAL DEVELOPED CONDITION, ALL OTHER BASINS ASSUMED TO BE FULLY DEVELOPED.
DETENTION FACILITY "C" ASSUMED TO BE CONSTRUCTED TO DEVELOPED CONDITION
REQUIRED CAPACITY BUT WITHOUT AN OUTFALL SO IT FUNCTIONS AS A TEMPORARY
RETENTION POND. DETENTION FACILITIES "A", "B", "E", AND "H" ARE ASSUMED TO BE
CONTRACTED TO THE DEVELOPED CONDITION REQUIREMENTS.
NOTE: THE DIVERSION ROUTINES WERE REMOVED FROM THE MODEL FOR THE 5 YEAR STORM
NOTE: THE OUTFLOW CURVE FOR THE SUMMER FIELD DETENTION POND WAS MODIFIED
SLIGHTLY TO ALLOW THE 5 YEAR MODEL TO RUN.

15 IO
OUTPUT CONTROL VARIABLES
 IPRINT 5 PRINT CONTROL
 IPLT 0 PLOT CONTROL
 QSCAL 0. HYDROGRAPH PLOT SCALE

IT
HYDROGRAPH TIME DATA
 NMIN 3 MINUTES IN COMPUTATION INTERVAL
 IDATE 1 0 STARTING DATE
 ITIME 0000 STARTING TIME
 NQ 300 NUMBER OF HYDROGRAPH ORDINATES
 NDATE 1 0 ENDING DATE
 NDTIME 1457 ENDING TIME
 ICENT 19 CENTURY MARK

COMPUTATION INTERVAL 0.05 HOURS
TOTAL TIME BASE 14.95 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

 *
111 KK * RR-DFE *
 *

118 KO OUTPUT CONTROL VARIABLES
 IPRNT 3 PRINT CONTROL
 IPLOT 1 PLOT CONTROL
 GSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

119 RS STORAGE ROUTING
 NSTPS 1 NUMBER OF SUBREACHES
 ITYP STOR TYPE OF INITIAL CONDITION
 RSVR1C 0.00 INITIAL CONDITION
 X 0.00 WORKING R AND D COEFFICIENT

120 SV STORAGE 0.0 0.0 1.3 3.9 6.9 10.3 14.1 18.2 22.8 27.9

121 SE ELEVATION 784.00 786.00 788.00 790.00 792.00 794.00 796.00 798.00 800.00 802.00

HYDROGRAPH AT STATION RR-DFE

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
 (CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
 97. 6.35 34. 16. 16. 16.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
 (AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
 2. 6.35 0. 0. 0. 0.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
 (FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
 788.60 6.35 785.88 784.87 784.87 784.87

CUMULATIVE AREA = 0.98 SQ MI

 *

* RR-DFC *

* * *

OUTPUT CONTROL VARIABLES
IPRTN 3 PRINT CONTROL
IPLOT 1 PLOT CONTROL
QSCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

STORAGE ROUTING
NSPTS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

STORAGE
0.0 2.7 9.7 18.6 28.0 38.2 49.0 60.5 72.8 85.3

ELEVATION
62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00

DISCHARGE
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HYDROGRAPH AT STATION RR-DFC

EAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
0.05 0.0 0.0 0.0 0.0

PFAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
10. 14.95 0. 0. 0. 0.

EAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
66.07 14.95 65.65 63.90 63.90 63.90

CUMULATIVE AREA = 0.70 SQ MI

* * *

85 KK * RR-DFB *

* * *

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
QSCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

STORAGE
0.0 0.1 1.2 3.3 5.8 8.7 12.1 15.9 20.1 23.6
24.8 30.0

ELEVATION
71.20 72.00 74.00 76.00 78.00 80.00 82.00 84.00 86.00 87.60
88.00 90.00

DISCHARGE
0.22 73. 130. 169. 202. 236. 260. 285. 301.
371. 1222.

HYDROGRAPH AT STATION RR-DFB

PEAK FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR

(INCHES) 0.192 0.221 0.221 0.221
(AC-FT) 16. 18. 18. 18.

PEAK STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
2. 6.45 0. 0. 0. 0.

PEAK STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
75.03 6.45 72.37 71.74 71.74 71.74

CUMULATIVE AREA = 1.52 SQ MI

*
*
464 KK
* RR-DFB *
*

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLLOT 1 PLOT CONTROL
QSCAL 100. HYDROGRAPH PLOT SCALE
HYDROGRAPH ROUTING DATA

470 RS
STORAGE ROUTING

<table>
<thead>
<tr>
<th>NSTPS</th>
<th>ITPS</th>
<th>RSVRSC</th>
<th>X</th>
<th>NUMBER OF SUBREACHES</th>
<th>TYPE OF INITIAL CONDITION</th>
<th>INITIAL CONDITION</th>
<th>WORKING R AND D COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

71 SV
STORAGE

<table>
<thead>
<tr>
<th>STORAGE</th>
<th>0.0</th>
<th>0.0</th>
<th>0.2</th>
<th>4.2</th>
<th>2.8</th>
<th>4.3</th>
<th>5.3</th>
<th>6.5</th>
<th>11.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

73 SQ
DISCHARGE

<table>
<thead>
<tr>
<th>DISCHARGE</th>
<th>2.0</th>
<th>3.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>5.0</th>
<th>6.0</th>
<th>8.0</th>
<th>9.0</th>
<th>11.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

75 SE
ELEVATION

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>6796.60</th>
<th>6797.00</th>
<th>6798.00</th>
<th>6800.00</th>
<th>6802.00</th>
<th>6803.50</th>
<th>6803.51</th>
<th>6804.00</th>
<th>6804.10</th>
<th>6805.50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6806.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH AT STATION
RR-DFA

PEAK FLOW
TIME

<table>
<thead>
<tr>
<th>PEAK FLOW (CFS)</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>8.10</td>
<td>6.0</td>
</tr>
</tbody>
</table>

PEAK STORAGE
TIME

<table>
<thead>
<tr>
<th>PEAK STORAGE (AC-FT)</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>8.15</td>
<td>3.0</td>
</tr>
</tbody>
</table>

PEAK STAGE
TIME

<table>
<thead>
<tr>
<th>PEAK STAGE (FEET)</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6803.51</td>
<td>7.65</td>
<td>6803.48</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 0.14 SQ MI

*
*
*
*

576 KK
*
*
*
*

90 KO
OUTPUT CONTROL VARIABLES

<table>
<thead>
<tr>
<th>IPRINT</th>
<th>PRINT CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPLOT</th>
<th>PLOT CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSCAL</th>
<th>HYDROGRAPH PLOT SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH ROUTING DATA

71 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

592 SV STORAGE 0.0 0.6 4.6 6.9 10.3
593 SE ELEVATION 92.00 94.00 96.00 98.00 100.00
594 SQ DISCHARGE 80. 126. 131. 137. 144.

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFSF

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
 (CFS) (HR) (CFS) 6-HR 24-HR 72-HR 14.95-HR
 92. 6.20 80. 80. 80. 80.
(INCHES) 4.724 11.746 11.746 11.746

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
 (AC-FT) (HR) (CFS) 6-HR 24-HR 72-HR 14.95-HR
 0. 6.20 0. 0. 0. 0.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
 (FEET) (HR) (CFS) 6-HR 24-HR 72-HR 14.95-HR
 92.50 6.20 92.01 92.00 92.00 92.00

CUMULATIVE AREA = 0.16 SQ MI

*** ***

* *
719 KK * RR-DFS* *
* *

732 KO OUTPUT CONTROL VARIABLES
 IPRINT 3 PRINT CONTROL
 IPRINT 1 PLOT CONTROL
 QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

733 RS STORAGE ROUTING
 NSTEPS 1 NUMBER OF SUBREACHES
 ITYP STOR TYPE OF INITIAL CONDITION
 RSVRIC 0.00 INITIAL CONDITION
 X 0.00 WORKING R AND D COEFFICIENT

734 SA AREA 0.0 0.2 0.5 4.8 5.2 5.5 5.8 6.1 6.4 6.8
 7.1 7.3 7.5 7.7 7.9
736 SE
ELEVATION 54.00 55.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00
72.00 73.00 74.00 75.00 76.00

738 SQ
DISCHARGE 0. 105. 194. 275. 344. 401. 451. 496. 560. 747.
998. 1142. 1247. 1750. 2100.

COMPUTED STORAGE-ELEVATION DATA

| STORAGE | 0.00 | 0.06 | 0.38 | 4.93 | 14.99 | 25.74 | 37.09 | 49.05 | 61.62 | 74.83 |
| ELEVATION | 54.00 | 55.00 | 56.00 | 58.00 | 60.00 | 62.00 | 64.00 | 66.00 | 68.00 | 70.00 |

| STORAGE | 88.75 | 95.99 | 103.43 | 111.06 | 118.90 |
| ELEVATION | 72.00 | 73.00 | 74.00 | 75.00 | 76.00 |

*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0. TO 105.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS,
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)

HYDROGRAPH AT STATION RR-DF#1

PEAK FLOW	TIME	MAXIMUM AVERAGE FLOW
(CFS)	(HR)	
452.	6.75	310. 187. 187. 187.
(INCHES)	0.061	0.976 0.976 0.976
(AC-FT)	154.	231. 231. 231.

PEAK STORAGE	TIME	MAXIMUM AVERAGE STORAGE
(AC-FT)	(HR)	
37.	6.75	16. 6. 6. 6.

PEAK STAGE	TIME	MAXIMUM AVERAGE STAGE
(FEET)	(HR)	
64.06	6.75	59.56 56.84 56.84

CUMULATIVE AREA = 4.43 SQ MI

* *

81 KK
* AP28 *
* *

86 KO
OUTPUT CONTROL VARIABLES

IPRNT	3 PRINT CONTROL
ISTOP	1 PLOT CONTROL
OSCAL	0. HYDROGRAPH PLOT SCALE

787 HC
HYDROGRAPH COMBINATION

| ICOMP | 3 NUMBER OF HYDROGRAPHS TO COMBINE |
HYDROGRAPH AT STATION AP2B

<table>
<thead>
<tr>
<th>PEAK FLOW (CFS)</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.0</td>
<td>6.05</td>
<td>343. 201. 201. 201.</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>(AC-FT)</td>
<td>0.695 1.012 1.012 1.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170. 248. 248. 248.</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.59 SQ MI
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>PEAK FLOW</th>
<th>TIME OF PEAK</th>
<th>AVERAGE FLOW FOR MAXIMUM PERIOD</th>
<th>BASIN AREA</th>
<th>MAXIMUM STAGE</th>
<th>TIME OF MAX STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN1</td>
<td>22.</td>
<td>6.30</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-1PN1</td>
<td>25.</td>
<td>6.55</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.16</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN2</td>
<td>23.</td>
<td>6.35</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.23</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>API1</td>
<td>43.</td>
<td>6.55</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.39</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API1</td>
<td>43.</td>
<td>6.65</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.39</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN3</td>
<td>19.</td>
<td>6.20</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>0.12</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>API2</td>
<td>50.</td>
<td>6.65</td>
<td>12.</td>
<td>6.</td>
<td>6.</td>
<td>0.51</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API2</td>
<td>49.</td>
<td>6.75</td>
<td>12.</td>
<td>6.</td>
<td>6.</td>
<td>0.51</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN4</td>
<td>23.</td>
<td>6.15</td>
<td>3.</td>
<td>2.</td>
<td>2.</td>
<td>0.14</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>API3</td>
<td>54.</td>
<td>6.75</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.66</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API3</td>
<td>53.</td>
<td>6.85</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN5</td>
<td>8.</td>
<td>6.10</td>
<td>1.</td>
<td>0.</td>
<td>0.</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN9</td>
<td>20.</td>
<td>6.10</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.04</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP-4</td>
<td>56.</td>
<td>6.85</td>
<td>18.</td>
<td>9.</td>
<td>9.</td>
<td>0.74</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API4</td>
<td>55.</td>
<td>6.90</td>
<td>18.</td>
<td>9.</td>
<td>9.</td>
<td>0.74</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN11</td>
<td>55.</td>
<td>6.10</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.08</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN12</td>
<td>17.</td>
<td>6.05</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN13</td>
<td>73.</td>
<td>6.10</td>
<td>8.</td>
<td>4.</td>
<td>4.</td>
<td>0.13</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>APDNE</td>
<td>165.</td>
<td>6.10</td>
<td>34.</td>
<td>16.</td>
<td>16.</td>
<td>0.98</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DNE</td>
<td>97.</td>
<td>6.35</td>
<td>34.</td>
<td>16.</td>
<td>16.</td>
<td>0.98 788.60 6.35</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DNE</td>
<td>97.</td>
<td>6.35</td>
<td>34.</td>
<td>16.</td>
<td>16.</td>
<td>0.98</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN14</td>
<td>17.</td>
<td>6.05</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.03</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PN14</td>
<td>17.</td>
<td>6.10</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.03</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN15</td>
<td>39.</td>
<td>6.10</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP-5</td>
<td>135.</td>
<td>6.15</td>
<td>40.</td>
<td>18.</td>
<td>18.</td>
<td>1.08</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API5</td>
<td>135.</td>
<td>6.15</td>
<td>40.</td>
<td>18.</td>
<td>18.</td>
<td>1.08</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS1</td>
<td>17</td>
<td>6.35</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS2</td>
<td>11</td>
<td>6.35</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS3</td>
<td>15</td>
<td>6.20</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-IPS1</td>
<td>17</td>
<td>6.55</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-IPS3</td>
<td>16</td>
<td>6.40</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS4</td>
<td>20</td>
<td>6.25</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.17</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API4</td>
<td>30</td>
<td>6.70</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.27</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS5</td>
<td>15</td>
<td>6.35</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API5</td>
<td>37</td>
<td>6.70</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>0.41</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>API16</td>
<td>55</td>
<td>6.70</td>
<td>15</td>
<td>7</td>
<td>7</td>
<td>0.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS10</td>
<td>22</td>
<td>6.10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFC</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS6</td>
<td>14</td>
<td>6.30</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-IPS6</td>
<td>16</td>
<td>6.65</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS7</td>
<td>28</td>
<td>6.25</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0.21</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API7</td>
<td>28</td>
<td>6.25</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0.34</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS8</td>
<td>13</td>
<td>6.20</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS9</td>
<td>36</td>
<td>6.10</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>API18</td>
<td>49</td>
<td>6.25</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>0.49</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API8</td>
<td>49</td>
<td>6.35</td>
<td>13</td>
<td>6</td>
<td>6</td>
<td>0.49</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-IPS10</td>
<td>60</td>
<td>6.10</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.12</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>API19</td>
<td>99</td>
<td>6.10</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>1.31</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-API9</td>
<td>98</td>
<td>6.25</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>1.31</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS11</td>
<td>51</td>
<td>6.05</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0.06</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS12</td>
<td>52</td>
<td>6.15</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>APDFB</td>
<td>169</td>
<td>6.20</td>
<td>31</td>
<td>15</td>
<td>15</td>
<td>1.52</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFB</td>
<td>102.</td>
<td>6.45</td>
<td>31.</td>
<td>14.</td>
<td>14.</td>
<td>1.52</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFB</td>
<td>102.</td>
<td>6.45</td>
<td>31.</td>
<td>14.</td>
<td>14.</td>
<td>1.52</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS13</td>
<td>42.</td>
<td>6.05</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.06</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP11</td>
<td>110.</td>
<td>6.60</td>
<td>35.</td>
<td>16.</td>
<td>16.</td>
<td>1.58</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP11</td>
<td>110.</td>
<td>6.60</td>
<td>35.</td>
<td>16.</td>
<td>16.</td>
<td>1.58</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP5A</td>
<td>231.</td>
<td>6.20</td>
<td>75.</td>
<td>35.</td>
<td>35.</td>
<td>2.66</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP5A</td>
<td>230.</td>
<td>6.25</td>
<td>75.</td>
<td>35.</td>
<td>35.</td>
<td>2.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM1</td>
<td>41.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PM1</td>
<td>41.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM2</td>
<td>31.</td>
<td>6.25</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.15</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM3</td>
<td>32.</td>
<td>6.15</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.07</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>AP12</td>
<td>323.</td>
<td>6.20</td>
<td>89.</td>
<td>41.</td>
<td>41.</td>
<td>2.94</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP12</td>
<td>321.</td>
<td>6.25</td>
<td>89.</td>
<td>41.</td>
<td>41.</td>
<td>2.94</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM4</td>
<td>57.</td>
<td>6.10</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.11</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP13</td>
<td>351.</td>
<td>6.25</td>
<td>95.</td>
<td>44.</td>
<td>44.</td>
<td>3.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS1</td>
<td>30.</td>
<td>6.10</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-CS1</td>
<td>30.</td>
<td>6.15</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS2</td>
<td>149.</td>
<td>6.00</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.07</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS2</td>
<td>149.</td>
<td>6.00</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.07</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP14</td>
<td>167.</td>
<td>6.00</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.12</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP14</td>
<td>165.</td>
<td>6.00</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.12</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS3</td>
<td>61.</td>
<td>6.05</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS3</td>
<td>61.</td>
<td>6.05</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.05</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP15</td>
<td>223.</td>
<td>6.05</td>
<td>26.</td>
<td>11.</td>
<td>11.</td>
<td>0.18</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP15</td>
<td>223.</td>
<td>6.05</td>
<td>26.</td>
<td>11.</td>
<td>11.</td>
<td>0.18</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS4</td>
<td>107.</td>
<td>6.00</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFVC</td>
<td>17.</td>
<td>6.25</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP16</td>
<td>239.</td>
<td>6.05</td>
<td>37.</td>
<td>16.</td>
<td>16.</td>
<td>0.23</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP16</td>
<td>239.</td>
<td>6.05</td>
<td>37.</td>
<td>16.</td>
<td>16.</td>
<td>0.23</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN1</td>
<td>102.</td>
<td>6.10</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.14</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFA</td>
<td>5.</td>
<td>8.10</td>
<td>5.</td>
<td>4.</td>
<td>4.</td>
<td>0.14</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFA</td>
<td>5.</td>
<td>8.15</td>
<td>5.</td>
<td>4.</td>
<td>4.</td>
<td>0.14</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN2</td>
<td>47.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.08</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP17</td>
<td>51.</td>
<td>6.10</td>
<td>10.</td>
<td>6.</td>
<td>6.</td>
<td>0.22</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP17</td>
<td>51.</td>
<td>6.15</td>
<td>10.</td>
<td>6.</td>
<td>6.</td>
<td>0.22</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN3</td>
<td>40.</td>
<td>6.05</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP18</td>
<td>88.</td>
<td>6.10</td>
<td>14.</td>
<td>8.</td>
<td>8.</td>
<td>0.27</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP18</td>
<td>87.</td>
<td>6.10</td>
<td>14.</td>
<td>8.</td>
<td>8.</td>
<td>0.27</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP19</td>
<td>581.</td>
<td>6.15</td>
<td>144.</td>
<td>68.</td>
<td>68.</td>
<td>3.55</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP19</td>
<td>576.</td>
<td>6.15</td>
<td>144.</td>
<td>68.</td>
<td>68.</td>
<td>3.55</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN5</td>
<td>78.</td>
<td>6.10</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.18</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP20</td>
<td>669.</td>
<td>6.15</td>
<td>153.</td>
<td>72.</td>
<td>72.</td>
<td>3.73</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN6</td>
<td>186.</td>
<td>6.00</td>
<td>21.</td>
<td>9.</td>
<td>9.</td>
<td>0.09</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP21</td>
<td>747.</td>
<td>6.10</td>
<td>172.</td>
<td>81.</td>
<td>81.</td>
<td>3.82</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN7</td>
<td>66.</td>
<td>6.25</td>
<td>10.</td>
<td>5.</td>
<td>5.</td>
<td>0.14</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F1</td>
<td>89.</td>
<td>6.10</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.12</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-F1P</td>
<td>87.</td>
<td>6.10</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.12</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F2</td>
<td>24.</td>
<td>6.10</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.04</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP-DFSF</td>
<td>110.</td>
<td>6.10</td>
<td>12.</td>
<td>6.</td>
<td>6.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFSF</td>
<td>92.</td>
<td>6.20</td>
<td>80.</td>
<td>80.</td>
<td>80.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFSF</td>
<td>91.</td>
<td>6.20</td>
<td>80.</td>
<td>80.</td>
<td>80.</td>
<td>0.16</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F3</td>
<td>76.</td>
<td>6.10</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.11</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP22</td>
<td>161.</td>
<td>6.15</td>
<td>89.</td>
<td>84.</td>
<td>84.</td>
<td>0.27</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP22P</td>
<td>159.</td>
<td>6.20</td>
<td>89.</td>
<td>84.</td>
<td>84.</td>
<td>0.27</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F4</td>
<td>38.</td>
<td>6.10</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFF4</td>
<td>38.</td>
<td>6.10</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP23</td>
<td>194.</td>
<td>6.15</td>
<td>93.</td>
<td>86.</td>
<td>86.</td>
<td>0.31</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP23P</td>
<td>193.</td>
<td>6.15</td>
<td>93.</td>
<td>86.</td>
<td>86.</td>
<td>0.31</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F5</td>
<td>127.</td>
<td>6.00</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.06</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFF5</td>
<td>127.</td>
<td>6.00</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.06</td>
</tr>
<tr>
<td>Description</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2 Combined at AP24</td>
<td>298.</td>
<td>6.05</td>
<td>107.</td>
<td>92.</td>
<td>92.</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Routed To RT-AP24P</td>
<td>295.</td>
<td>6.05</td>
<td>107.</td>
<td>92.</td>
<td>92.</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-F6</td>
<td>81.</td>
<td>6.00</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Routed To RR-DFF6</td>
<td>81.</td>
<td>6.00</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-F7</td>
<td>93.</td>
<td>6.00</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Routed To RR-DFF7</td>
<td>93.</td>
<td>6.00</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>3 Combined at AP25</td>
<td>461.</td>
<td>6.05</td>
<td>125.</td>
<td>100.</td>
<td>100.</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Routed To RT-AP25P</td>
<td>459.</td>
<td>6.05</td>
<td>125.</td>
<td>100.</td>
<td>100.</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-PMB</td>
<td>30.</td>
<td>6.00</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>4 Combined at AP-DFF1</td>
<td>1251.</td>
<td>6.10</td>
<td>310.</td>
<td>187.</td>
<td>187.</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>Routed To RR-DFF1</td>
<td>452.</td>
<td>6.75</td>
<td>310.</td>
<td>187.</td>
<td>187.</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>Routed To RT-AP26</td>
<td>452.</td>
<td>6.80</td>
<td>310.</td>
<td>186.</td>
<td>186.</td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-PM9</td>
<td>124.</td>
<td>6.00</td>
<td>13.</td>
<td>5.</td>
<td>5.</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>2 Combined at AP27</td>
<td>460.</td>
<td>6.75</td>
<td>325.</td>
<td>191.</td>
<td>191.</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-PM10</td>
<td>102.</td>
<td>6.00</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Routed To RRDPM10</td>
<td>99.</td>
<td>6.00</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Routed To RT-PM10</td>
<td>98.</td>
<td>6.00</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Hydrograph at SB-PM11</td>
<td>87.</td>
<td>6.00</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>3 Combined at AP28</td>
<td>632.</td>
<td>6.05</td>
<td>343.</td>
<td>201.</td>
<td>201.</td>
<td>4.59</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF KINEMATIC WAVE - MUSKINGUM-CUNGE ROUTING
(FLOW IS DIRECT RUNOFF WITHOUT BASE FLOW)

<table>
<thead>
<tr>
<th>ISTAQ</th>
<th>ELEMENT</th>
<th>DT (MIN)</th>
<th>PEAK (CFS)</th>
<th>TIME TO PEAK (MIN)</th>
<th>VOLUME (MIN)</th>
<th>DT (MIN)</th>
<th>PEAK (CFS)</th>
<th>TIME TO PEAK (MIN)</th>
<th>VOLUME (MIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-1P1N</td>
<td>MANE</td>
<td>1.65</td>
<td>25.94</td>
<td>389.40</td>
<td>0.28</td>
<td>3.00</td>
<td>24.83</td>
<td>393.00</td>
<td>0.28</td>
</tr>
</tbody>
</table>

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2554E+01 EXCESS=0.0000E+00 OUTFLOW=0.2491E+01 BASIN STORAGE=0.1056E+00 PERCENT ERROR= -1.7

| RT-API | MANE | 2.40 | 43.36 | 398.40 | 0.26 | 3.00 | 42.84 | 399.00 | 0.26 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.5489E+01 EXCESS=0.0000E+00 OUTFLOW=0.5417E+01 BASIN STORAGE=0.9483E+01 PERCENT ERROR= -0.4

| RT-API | MANE | 2.70 | 48.86 | 405.00 | 0.26 | 3.00 | 48.86 | 405.00 | 0.26 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.7261E+01 EXCESS=0.0000E+00 OUTFLOW=0.7200E+01 BASIN STORAGE=0.8563E+01 PERCENT ERROR= -0.3

| RT-API | MANE | 2.65 | 53.01 | 410.40 | 0.26 | 3.00 | 52.50 | 411.00 | 0.26 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9098E+01 EXCESS=0.0000E+00 OUTFLOW=0.9004E+01 BASIN STORAGE=0.1178E+01 PERCENT ERROR= -0.3

| RT-API | MANE | 3.00 | 54.85 | 414.00 | 0.27 | 3.00 | 54.85 | 414.00 | 0.27 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1076E+02 EXCESS=0.0000E+00 OUTFLOW=0.1069E+02 BASIN STORAGE=0.9697E+01 PERCENT ERROR= -0.2

| RT-API | MANE | 1.39 | 96.77 | 381.64 | 0.37 | 3.00 | 96.74 | 381.00 | 0.37 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1945E+02 EXCESS=0.0000E+00 OUTFLOW=0.1949E+02 BASIN STORAGE=0.4016E-01 PERCENT ERROR= 0.0

| RT-API | MANE | 1.30 | 17.18 | 364.89 | 0.67 | 3.00 | 17.04 | 366.00 | 0.67 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.9711E+00 EXCESS=0.0000E+00 OUTFLOW=0.9699E+00 BASIN STORAGE=0.1459E-02 PERCENT ERROR= 0.0

| RT-API | MANE | 0.29 | 135.15 | 369.52 | 0.40 | 3.00 | 134.70 | 369.00 | 0.40 |

CONTINUITY SUMMARY (AC-FT) - INFLOW=0.2283E+02 EXCESS=0.0000E+00 OUTFLOW=0.2284E+02 BASIN STORAGE=0.8051E-02 PERCENT ERROR= 0.0

<p>| RT-API | MANE | 1.80 | 16.97 | 394.20 | 0.27 | 3.00 | 16.92 | 393.00 | 0.27 |</p>
<table>
<thead>
<tr>
<th>Mane</th>
<th>Day</th>
<th>Inf</th>
<th>Excess</th>
<th>Out</th>
<th>Storage</th>
<th>Percent Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS3</td>
<td>1.35</td>
<td>17</td>
<td>387.45</td>
<td>0.24</td>
<td>3.00</td>
<td>16.04</td>
</tr>
<tr>
<td>100.46</td>
<td>376.20</td>
<td>0.16</td>
<td>3.00</td>
<td>98.03</td>
<td>375.00</td>
<td>0.16</td>
</tr>
<tr>
<td>IPS6</td>
<td>1.65</td>
<td>19</td>
<td>397.65</td>
<td>0.24</td>
<td>3.00</td>
<td>15.85</td>
</tr>
<tr>
<td>100.46</td>
<td>376.20</td>
<td>0.16</td>
<td>3.00</td>
<td>98.03</td>
<td>375.00</td>
<td>0.16</td>
</tr>
<tr>
<td>IPS7</td>
<td>1.65</td>
<td>28</td>
<td>382.80</td>
<td>0.25</td>
<td>3.00</td>
<td>27.94</td>
</tr>
<tr>
<td>100.46</td>
<td>376.20</td>
<td>0.16</td>
<td>3.00</td>
<td>98.03</td>
<td>375.00</td>
<td>0.16</td>
</tr>
<tr>
<td>IPS8</td>
<td>1.65</td>
<td>49</td>
<td>381.15</td>
<td>0.30</td>
<td>3.00</td>
<td>49.36</td>
</tr>
<tr>
<td>100.46</td>
<td>376.20</td>
<td>0.16</td>
<td>3.00</td>
<td>98.03</td>
<td>375.00</td>
<td>0.16</td>
</tr>
<tr>
<td>IPS9</td>
<td>1.65</td>
<td>109.51</td>
<td>384.87</td>
<td>0.24</td>
<td>3.00</td>
<td>109.75</td>
</tr>
<tr>
<td>100.46</td>
<td>376.20</td>
<td>0.16</td>
<td>3.00</td>
<td>98.03</td>
<td>375.00</td>
<td>0.16</td>
</tr>
<tr>
<td>IPS10</td>
<td>1.65</td>
<td>230.31</td>
<td>375.30</td>
<td>0.30</td>
<td>3.00</td>
<td>230.31</td>
</tr>
<tr>
<td>Site</td>
<td>Inflow</td>
<td>Excess</td>
<td>Outflow</td>
<td>Basin Storage</td>
<td>Percent Error</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>RT-PM1</td>
<td>0.73</td>
<td>41.14</td>
<td>366.73</td>
<td>0.87</td>
<td>3.00</td>
<td>40.89</td>
</tr>
<tr>
<td>RT-AP12</td>
<td>1.05</td>
<td>321.30</td>
<td>375.90</td>
<td>0.32</td>
<td>3.00</td>
<td>320.89</td>
</tr>
<tr>
<td>RT-CS1</td>
<td>1.50</td>
<td>30.16</td>
<td>367.50</td>
<td>0.64</td>
<td>3.00</td>
<td>29.97</td>
</tr>
<tr>
<td>RT-AP14</td>
<td>0.61</td>
<td>166.33</td>
<td>360.81</td>
<td>1.62</td>
<td>3.00</td>
<td>165.44</td>
</tr>
<tr>
<td>RT-AP15</td>
<td>0.57</td>
<td>222.89</td>
<td>362.24</td>
<td>1.51</td>
<td>3.00</td>
<td>222.66</td>
</tr>
<tr>
<td>RT-AP16</td>
<td>0.13</td>
<td>238.73</td>
<td>363.01</td>
<td>1.64</td>
<td>3.00</td>
<td>238.72</td>
</tr>
<tr>
<td>RT-DFA</td>
<td>1.21</td>
<td>5.12</td>
<td>491.17</td>
<td>0.62</td>
<td>3.00</td>
<td>5.12</td>
</tr>
<tr>
<td>RT-AP17</td>
<td>1.00</td>
<td>51.07</td>
<td>367.43</td>
<td>0.66</td>
<td>3.00</td>
<td>50.50</td>
</tr>
<tr>
<td>RT-AP18</td>
<td>0.42</td>
<td>87.62</td>
<td>366.30</td>
<td>0.70</td>
<td>3.00</td>
<td>87.34</td>
</tr>
<tr>
<td>RT-AP19</td>
<td>1.80</td>
<td>579.57</td>
<td>370.80</td>
<td>0.45</td>
<td>3.00</td>
<td>576.03</td>
</tr>
</tbody>
</table>
HEC-1 MODEL OUTPUT
INTERIM CONDITION
• 100-YEAR STORM
FLOOD HYDROGRAPH PACKAGE (HEC-1)

MAY 1991
VERSION 4.0.1E

RUN DATE 06/05/1998 TIME 17:41:34

X X XXXXXX XXXX X
X X X X X X XX
X X X X X X X
XXXXXX XXX X XXXXX X
X X X X X X X
X X X X X X X
X X XXXXXX XXXX XXX

::: :::: Full Microcomputer Implementation :::: ::::
::: by :::: Haestad Methods, Inc. :::: ::::
::: ::::

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

HEC-1 INPUT

ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
1 ID PINE CREEK DRAINAGE BASIN - 24HR,(TYPE IIa100 YEAR STORM)
2 ID FILE PCBPSII.DAT
3 ID INTERIM CONDITION MODEL
4 ID MODEL MODIFIED FOR 8-98 REVISION LAST UPDATE:8/5/98
5 ID BASINS PN1 THROUGH PN8, PN10, AND PS1 THROUGH PS9 IN UNDEVELOPED OR
6 ID PARTIAL DEVELOPED CONDITION. ALL OTHER BASINS ASSUMED TO BE FULLY DEVELOPED.
7 ID DETENTION FACILITY "C" ASSUMED TO BE CONSTRUCTED TO DEVELOPED CONDITION
8 ID REQUIRED CAPACITY BUT WITHOUT AN OUTFALL SO IT FUNCTIONS AS A TEMPORARY
9 ID RETENTION POND. DETENTION FACILITIES "A", "B", AND "E" ARE ASSUMED TO
10 ID BE CONSTRUCTED TO THE DEVELOPED CONDITION REQUIREMENTS.

*** FREE ***

*DIAGRAM

IT 3 0 0 300

ID 5

13 KK SB-IPN1
14 KM ***
15 KM *** BEGIN CALCULATIONS FOR THE NORTH FORK OF PINE CREEK WATERSHED******
16 KM ***
17 KM COMPUTE HYDROGRAPH FOR BASIN IPN1
18 BA .164
19 IN 15
20 PB 4.4
21 PC 0000 .0005 .0015 .0030 .0045 .0060 .0080 .0100 .0120 .0143
22 PC .0165 .0188 .0210 .0233 .0259 .0278 .0320 .0390 .0460 .0530
23 PC .0600 .0750 .1000 .1400 .1700 .2100 .2500 .2900 .3300 .3700
24 PC .8000 .8100 .8200 .8200 .8300 .8300 .8400 .8400 .8500 .8500
25 PC .8600 .8638 .8675 .8713 .8750 .8788 .8825 .8863 .8900 .8938
26 PC .8975 .9013 .9050 .9083 .9115 .9148 .9180 .9210 .9240 .9270
27 PC .9300 .9325 .9350 .9375 .9400 .9425 .9450 .9475 .9500 .9525
28 PC .9550 .9575 .9600 .9625 .9650 .9675 .9700 .9725 .9750 .9775
29 PC .9800 .9813 .9825 .9838 .9850 .9863 .9875 .9888 .9900 .9913
30 PC .9925 .9938 .9950 .9963 .9975 .9988 1.000
31 LS 0 63.7
32 UD .360

33 KK RT-IPN1
34 KM ROUTE THE FLOW FROM BASIN IPN1 THROUGH BASIN IPN2 TO API1
35 RD 2500 .033 .045 TRAP 100 15

36 KK SB-IPN2
37 KM COMPUTE HYDROGRAPH FOR BASIN IPN2
38 BA .229
39 LS 0 62.0
40 UD .377

41 KK API1
42 KM COMBINE Routed FLOW FROM BASIN IPN1 WITH FLOW FROM BASIN IPN2
43 NC 2
ID......1......2......3......4......5......6......7......8......9......10

44 KK RT-API1
45 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API1 TO API2
46 RD 2600 .034 .045 TRAP 12 2.5

47 KK SB-IPN3
48 KM COMPUTE HYDROGRAPH FOR BASIN IPN3
49 BA .122
50 LS 0 63.3
51 UD .268

52 KK API2
53 KM COMBINE THE ROUTED FLOW FROM API1 WITH THE FLOW FROM BASIN IPN3
54 HC 2

55 KK RT-API12
56 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API2 TO API3
57 RD 1360 .026 .045 TRAP 30 4

58 KK SB-IPN4
59 KM COMPUTE HYDROGRAPH FOR BASIN IPN4
60 BA .142
61 LS 0 62.1
62 UD .198

63 KK API3
64 KM COMBINE THE ROUTED FLOW FROM API2 WITH THE FLOW FROM BASIN IPN4
65 HC 2

66 KK RT-API13
67 KM ROUTE THE FLOW IN THE NORTH FORK OF PINE CREEK FROM API3 TO API4
68 RD 1600 .02 .045 TRAP 20 3

69 KK SB-IPN5
70 KM COMPUTE HYDROGRAPH FOR BASIN IPN5
71 BA .043
72 LS 0 62
73 UD .169
74 KM **
75 KM **LAND DOWNSTREAM OF THIS POINT ASSUMED TO BE FULLY DEVELOPED ****
76 KM **

77 KK SB-PN9
78 KM COMPUTE HYDROGRAPH FOR BASIN PN9
79 BA .036
80 LS 0 72.8
81 UD .170

82 KK AP-4
83 KM COMBINE ROUTED FLOW FROM API3 WITH FLOW FROM BASINS IPN5 AND PN9
84 HC 3
LINE
ID........1........2........3........4........5........6........7........8........9........10

85 KK RT-AP4
86 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP4
87 KM TO DETENTION FACILITY "E" AT THE COLLECTOR STREET CROSSING
88 RD 1400 .032 .045 TRAP 20 3

89 KK SB-PN11
90 KM COMPUTE HYDROGRAPH FOR BASIN PN11
91 BA 0.079
92 LS 0 76.7
93 UD .189

94 KK SB-PN12
95 KM COMPUTE HYDROGRAPH FOR BASIN PN12
96 BA 0.039
97 LS 0 68.2
98 UD .129

99 KK SB-PN13
100 KM COMPUTE HYDROGRAPH FOR BASIN PN13
101 BA 0.127
102 LS 0 74
103 UD .195

104 KK APOFE
105 KM COMBINE ROUTED FLOW RT-AP4 WITH FLOW FROM BASINS PN11, PN12, AND PN13
106 KM AT REGIONAL DETENTION FACILITY "E"
107 HC 4

108 KK RR-DFE
109 KM NOTE: THE INPUT POND VOLUME REFLECTS THE DESIGN POND VOLUME ON 7-23-98
110 KM ROUTE FLOW THRU A DETENTION FACILITY. ASSUME A 54'' DIA OUTLET WITH
111 KM THE INVERT DEPRESSED 2' BELOW POND INVERT (INV EL=84, OUTLET 0 ESTIMATED
112 KM WITH BUREAU OF PUBLIC ROADS NOMOGRAPH FOR INLET CONTROL OF CULVERTS
113 KM DISCHARGE ABOVE EL 100.3 INCLUDES FLOW OVER EMERGENCY SPILLWAY
114 KM SCALE 1
115 KO 3 1
116 RS 1 STOR 0
117 SV 0 0 1.25 3.91 6.93 10.31 14.07 18.24 22.83 27.87
118 SE 784 786 788 790 792 794 796 798 800 802
119 SQ 0 25 80 136 173 210 240 263 280 1431

120 KK RT-DFE
121 KM ROUTE THE OUTFLOW FROM DETENTION FACILITY "E" IN A STORM DRAIN TO AP-5
122 RD 1800 .025 .013 CIRC 4.5

123 KK SB-PN14
124 KM COMPUTE HYDROGRAPH FOR BASIN PN14
125 BA .027
126 LS 0 74.3
127 UD .157
LINE ID........1........2........3........4........5........6........7........8........9........10

128 KK RT-PN14
129 KM ROUTE FLOW FROM BASIN PN14 IN A STORM DRAIN TO AP5
130 RD 1400 .055 .013 CIRC 2

131 KK SB-PN15
132 KM COMPUTE HYDROGRAPH FOR BASIN PN15
133 BA .074
134 LS 0 72.7
135 UD .186

136 KK AP-5
137 KM COMBINE ROUTED FLOW RT-PN14 TO FLOW FROM BASIN PN15
138 HC 3

139 KK RT-AP5
140 KM ROUTE THE FLOW AT AP5 TO AP5A AT THE CONFLUENCE OF THE FLOWS FROM THE
141 KM NORTH AND SOUTH FORKS OF PINE CREEK
142 RD 400 .025 .013 CIRC 5
143 KM ***
144 KM *** BEGIN CALCULATIONS FOR THE SOUTH FORK OF PINE CREEK WATERSHED***
145 KM ***

146 KK SB-IPS1
147 KM COMPUTE HYDROGRAPH FOR BASIN IPS1
148 BA .147
149 LS 0 63.1
150 UD .395

151 KK RT-IPS1
152 KM ROUTE THE FLOW FROM BASIN IPS1 THROUGH BASIN IPS2 TO AP16
153 RD 2200 .027 .045 TRAP 10 20

154 KK SB-IPS2
155 KM COMPUTE HYDROGRAPH FOR BASIN IPS2
156 BA .104
157 LS 0 62.2
158 UD .368

159 KK SB-IPS3
160 KM COMPUTE HYDROGRAPH FOR BASIN IPS3
161 BA .109
162 LS 0 62
163 UD .250

164 KK RT-IPS3
165 KM ROUTE THE FLOW FROM BASIN IPS3 THROUGH BASIN IPS4 TO AP14
166 RD 3250 .033 .045 TRAP 10 15

167 KK SB-IPS4
168 KM COMPUTE HYDROGRAPH FOR BASIN IPS4
169 BA .166
170 LS 0 62
171 UD .305
HEC-1 INPUT

LINE

172 KK API4
173 KM COMBINE THE ROUTED FLOW FROM BASIN IPS3 TO THE FLOW FROM BASIN IPS4
174 HC 2
175 KK RT-API4
176 KM ROUTE THE FLOW FROM API4 THROUGH BASIN IPS5 TO API5
177 RD 3100 .029 .045 TRAP 10 35
178 KK SB-IPS5
179 KM COMPUTE HYDROGRAPH FOR BASIN IPS5
180 BA .134
181 LS 0 62.5
182 UD .382
183 KK API5
184 KM COMBINE THE ROUTED FLOW FROM API4 TO THE FLOW FROM BASIN IPS5
185 HC 2
186 KK RT-API5
187 KM ROUTE THE FLOW FROM API5 THROUGH IPS2 API6
188 RD 1700 .031 .045 TRAP 50 35
189 KK API6
190 KM COMBINE THE ROUTED FLOW FROM API5 WITH THE ROUTED FLOW FROM BASIN IPS1
191 KM AND THE FLOW FROM BASIN IPS2 AT API6
192 HC 3
193 KK SB-PS10
194 KM COMPUTE HYDROGRAPH FOR BASIN PS10 (FULLY DEVELOPED CONDITION)
195 BA .038
196 LS 0 72.9
197 UD .160
198 KK APOFC
199 KM COMBINE FLOW AT FLOW FROM API6 WITH FLOW FROM BASIN PS10 IN REGIONAL
200 KM DETENTION FACILITY "C". THIS IS THE TOTAL INFLOW TO DETENTION FACILITY "C"
201 HC 2
202 KK RR-DFC
203 KM ROUTE THE FLOW THROUGH DETENTION FACILITY "C". ASSUME GRADING FOR THE
204 KM FULLY DEVELOPED CONDITION DETENTION POND IS COMPLETE BUT OUTFALL IS NOT
205 KM CONSTRUCTED SO POND FUNCTIONS AS A RETENTION POND.
206 KO 3 1 100
207 RS 1 STOR 0
208 SV 0 2.73 9.72 18.56 28.03 38.15 48.95 60.45 72.75 85.85
209 SV 99.66
210 SE 62 64 66 68 70 72 74 76 78 80
211 SE 82
212 SQ 0 0 0 0 0 0 0 0 0 0
213 SQ 0.10
HEC-1 INPUT

LINE

10......1......2......3......4......5......6......7......8......9......10

214 KK SB-IPS6
215 KM COMPUTE HYDROGRAPH FOR BASIN IPS6
216 BA .132
217 LS 0 62
218 UD .352

219 KK RT-IPS6
220 KM ROUTE THE FLOW FROM BASIN IPS6 THROUGH BASIN IPS7 TO API7
221 RD 4250 .028 .045 TRAP 25 10

222 KK SB-IPS7
223 KM COMPUTE HYDROGRAPH FOR BASIN IPS7
224 BA .209
225 LS 0 62.6
226 UD .289

227 KK API7
228 KM : COMBINE THE ROUTED FLOW FROM BASIN IPS6 WITH THE FLOW FROM BASIN IPS7
229 HC 2

230 KK RT-API7
231 KM ROUTE THE FLOW FROM API7 TO API8
232 RD 2300 .028 .045 TRAP 20 3

233 KK SB-IPS8
234 KM COMPUTE HYDROGRAPH FOR BASIN IPS8
235 BA .088
236 LS 0 62.7
237 UD .265

238 KK SB-IPS9
239 KM COMPUTE HYDROGRAPH FOR BASIN IPS9 (ASSUMED 23 ACRES OF SAGEWOOD DEVELOPED)
240 BA .059
241 LS 0 73.9
242 UD .165

243 KK API8
244 KM : COMBINE THE ROUTED FLOW FROM API7 TO THE FLOW FROM BASINS IPS8 AND IPS9
245 HC 3

246 KK RT-DPI8
247 KM ROUTE THE FLOW FROM DPI8 TO DPI9
248 RD 1200 .025 .045 TRAP 20 3

249 KKSB-IPS10
250 KM COMPUTE HYDROGRAPH FOR BASIN IPS10 (YMCA SITE AND 16 ACRES OF EXISTING
251 KM RESIDENTIAL DEVELOPMENT ASSUMED TO BE DEVELOPED)
252 BA .122
253 LS 0 71.5
254 UD .176
HEC-1 INPUT

LINE

ID.......1.......2.......3.......4.......5.......6.......7.......8.......9.......10

255 KK AP19
256 KM COMBINE THE ROUTED FLOW FROM AP1B TO THE FLOW FROM BASIN IPS10
257 KM ALSO ADD THE OUTFLOW HYDROGRAPH FROM DETENTION FACILITY "C" (NO OUTFLOW)
258 KM TO PROVIDE CONTINUITY IN THE MODEL
259 HC 3

260 KK RT-AP19
261 KM ROUTE THE FLOW IN THE SOUTH FORK OF PINE CREEK FROM AP19 TO DETENTION
262 KM FACILITY "B"
263 RD 3400 .027 .045 TRAP 20 3
264 KM **
265 KM ***** DOWNSTREAM BASINS ASSUMED TO BE FULLY DEVELOPED ********************
266 KM **

267 KK SB-PS11
268 KM COMPUTE HYDROGRAPH FOR BASIN PS11
269 BA .056
270 LS 0 80.3
271 UD .172

272 KK SB-PS12
273 KM COMPUTE HYDROGRAPH FOR BASIN PS12
274 BA .153
275 LS 0 69.0
276 UD .233

277 KK AP0FB
278 KM COMBINE THE ROUTED FLOW FROM AP19 TO THE FLOW FROM BASINS IPS11 AND IPS12
279 KM AT DETENTION FACILITY "B", THIS IS THE TOTAL INTERIM CONDITION INFLOW TO
280 KM DETENTION FACILITY "B"
281 HC 3

282 KK RR-DFB
283 KM ROUTE FLOW THROUGH REGIONAL DETENTION POND "B"
284 KM THIS VOLUME REFLECTS THE DESIGN VOLUME PER PRELIMINARY PLANS ON 7-23-98
285 KM WITH 34" DIA OUTLET SET AT INVERT ELEV. 70.2. OUTLET Q ESTIMATED WITH
286 KM BUREAU OF PUBLIC ROADS NOMO GRAPH FOR INLET CONTROL OF CONCRETE PIPE
287 KM DISCHARGE ABOVE 87.6 INCLUDES FLOW OVER 80' LONG EMERGENCY SPILLWAY
288 KM SCALE 1
289 KD 3 1
290 RS 1 STOR 0
291 SV 0 0.06 1.17 3.30 5.82 8.73 12.07 15.85 20.07 23.60
292 SV 24.76 29.96
293 SE 71.2 72.0 74 76 78 80 82 84 86 90
294 SE 88 90
295 SQ 0 22 73 130 169 202 236 260 285 301
296 SQ 371 1222

297 KK RT-DFB
298 KM ROUTE FLOW 1000 LF NORTHWEST IN A STORM DRAIN FROM DETENTION FACILITY "B"
299 KM TO AP-11
300 RD 1000 .021 .013 CIRC 4.5
HEC-1 INPUT PAGE 8

LINE

10......1......2......3......4......5......6......7......8......9......10

301 KK SB-PS13
302 KM COMPUTE HYDROGRAPH FOR BASIN PS13
303 BA .065
304 LS 0 74.1
305 UD .149

306 KK AP11
307 KM COMBINE ROUTED FLOW RT-0FB TO FLOW FROM BASIN PS13 AT AP11
308 HC 2

309 KK RT-AP11
310 KM ROUTE FLOW 600 LF NORTHWEST IN A STORM DRAIN FROM AP11 TO AP5A (THE
311 KM CONFLUENCE OF FLOWS FROM THE NORTH AND SOUTH FORKS OF PINE CREEK)
312 RD 600 .021 .013 CIRC 5

313 KK AP5A
314 KM COMBINE ROUTED FLOW AP5 (FLOW FROM THE NORTH FORK OF PINE CREEK) TO ROUTED
315 KN FLOW RT-AP11 (FLOW FROM THE SOUTH FORK OF PINE CREEK)
316 HC 2

317 KK RT-AP5A
318 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL 1300 FEET DOWN THE CHANNEL FROM
319 KM AP5A NEAR THE HISTORIC CONFLUENCE OF PINE CREEK TO AP12 AT THE CONFLUENCE
320 KM OF THE MAIN CHANNEL AND THE LEXINGTON DRIVE STORM DRAIN OUTFALL. USE AN
321 KM APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
322 RD 1300 .023 .045 TRAP 50 2

323 KK SB-PM1
324 KM COMPUTE HYDROGRAPH FOR BASIN PM1
325 BA .054
326 LS 0 78.5
327 UD .203

328 KK RT-PM1
329 KM ROUTE THE FLOW FROM BASIN PM1 1200 LF NORTH IN THE LEXINGTON DR. S.D. TO
330 KM PINE CREEK MAIN CHANNEL.
331 RD 1200 .08 .013 CIR 3.5

332 KK SB-PM2
333 KM COMPUTE HYDROGRAPH FOR BASIN PM2, AN AREA OF THE GOLF COURSE
334 BA .154
335 LS 0 66.0
336 UD .310

337 KK SB-PM3
338 KM COMPUTE HYDROGRAPH FOR BASIN PM3
339 BA .067
340 LS 0 73.5
341 UD .248
HEC-1 INPUT

LINE 10.......1.......2.......3.......4.......5.......6.......7.......8.......9.......10

342 KK AP12
343 KM COMBINE ROUTED FLOW RT-PM1 WITH THE ROUTED FLOW IN PINE CREEK MAIN CHANNEL
344 KM AND THE FLOW FROM BASINS PM2 AND PM3
345 HC 4
346
346 KK RT-AP12
347 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL DOWN THE CHANNEL FROM AP12 NEAR THE
348 KM OUTFALL OF LEXINGTON DRIVE STORM DRAIN TO THE CROSSING AT CHAPEL HILLS DRIVE
349 KM USE AN APPROXIMATE AVERAGE CHANNEL SECTION AND SLOPE FOR ROUTING.
350 RD 1600 .018 .045 TRAP 30 2

351 KK SB-PM4
352 KM COMPUTE HYDROGRAPH FOR BASIN PM4
353 BA .111
354 LS 0 71.9
355 UD .170

356 KK AP13
357 KM COMBINE FLOW FROM BASIN PM4 TO THE ROUTED FLOW RT-AP12 IN PINE CREEK MAIN
358 KM CHANNEL ON THE EAST SIDE OF THE CHAPEL HILLS DRIVE CROSSING
359 HC 2
360 KM **BEGIN SOUTH CHAPEL HILLS DRIVE STORM DRAIN WATERSHED*************
361 KM **

363 KK SB-CS1
364 KM COMPUTE HYDROGRAPH FOR BASIN CS1
365 BA .053
366 LS 0 73.6
367 UD .181

368 KK RT-CS1
369 KM ROUTE FLOW 1300 LF WEST IN DYNAMIC DR. ASSUME BULK OF FLOW IS ON THE SURFACE
370 RD 1300 .021 .013 TRAP 32 .01

371 KK SB-CS2
372 KM COMPUTE HYDROGRAPH FOR BASIN CS1
373 BA .070
374 LS 0 98.0
375 UD .101

376 KKRR-DPCS2
377 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION OF 1.6cfs
378 KM /ACRE FROM THE L1/O PROPERTY AS ASSUMED IN THE XDDP FOR BRIARIDGE BUSINESS
379 KM /CAMPUS. BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
380 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE AT
381 KM THE POND TO REFLECT POTENTIAL FREE DISCHARGE FROM A PORTION OF THE SUBBASIN
382 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs X 37ac=66 cfs
383 RS 1 STOR 0
384 SV 0 .001 6 10
385 SE 100 102 104 106
386 SQ 0 194 194 194
HEC-1 INPUT

387 KK AP14
388 KM COMBINE ROUTED FLOW RT-CS1 TO CONTROLLED FLOW FROM BASIN CS2 AT THE
389 KM INTERSECTION OF CHAPEL HILLS DR. AND DYNAMIC DR.
390 HC 2
391 KK RT-AP14
392 KM ROUTE FLOW 1100 LF NORTH IN THE CHAPEL HILLS DR. S.D. TO BRIARGATE PKWY.
393 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
394 KM OF THE STORM DRAIN BETWEEN DYNAMIC DRIVE AND BRIARGATE PARKWAY. SOME OF
395 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE.
396 RD 1100 .02 .013 CIR 4
397 KK SB-CS3
398 KM COMPUTE HYDROGRAPH FOR BASIN CH3
399 BA .053
400 LS 0 84.8
401 UD .177
402 KKRR-DPCS3
403 KM ROUTE FLOW THRU AN ASSUMED DETENTION FACILITY TO REFLECT DETENTION REDUCING
404 KM THE PEAK 100YR FLOW RATE FROM THE 9 ACRES OF THE BASIN THAT ARE DESIGNATED
405 KM AS L/O USE AS ASSUMED IN MDDP FOR BRIARGATE BUSINESS CAMPUS.
406 KM BECAUSE THE DISCHARGE CONFIGURATION IS UNKNOWN AT THIS TIME ASSUME
407 KM THAT THE PEAK DISCHARGE RATE MAY BE DISCHARGED AS SOON AS IT IS AVAILABLE
408 KM AT THE POND TO REFLECT FREE DISCHARGE FROM A PORTION OF THE SUB BASIN.
409 KM DISCHARGE REDUCTION ASSUMED AT 1.6 cfs X 9=14 cfs
410 RS 1 STOR 0
411 SV 0 .001 6 10
412 SE 100 102 104 106
413 SQ 0 123 123 123
414 KK AP15
415 KM COMBINE ROUTED FLOW RT-AP14 WITH CONTROLLED FLOW FROM BASIN CS3 AT THE
416 KM INTERSECTION OF CHAPEL HILLS DR. AND BRIARGATE PARKWAY. NOTE A SMALL PORTION
417 KM OF BASIN CS3 IS LOCATED DOWNSTREAM OF THIS POINT. FOR THIS MODELING PURPOSE
418 KM THIS IS CONSIDERED INSIGNIFICANT.
419 HC 2
420 KK RT-AP15
421 KM ROUTE FLOW 1400 LF NORTH IN THE CHAPEL HILLS DR. S.D.
422 KM NOTE: THE CALCULATED 100 YEAR FLOW IS IN EXCESS OF THE FULL PIPE CAPACITY
423 KM OF THE STORM DRAIN BETWEEN BRIARGATE PARKWAY AND PINE CREEK. SOME OF
424 KM THE FLOW MAY BE ON THE SURFACE IN CHAPEL HILLS DRIVE. A SMALL PORTION OF
425 KM THE SURFACE FLOW MAY BE DIVERTED DOWN BRIARGATE PARKWAY, BUT FOR THE PURPOSE
426 KM OF THIS ANALYSIS ALL OF THE FLOW FROM THE CHAPEL HILLS DRIVE/BRIARGATE PKWY.
427 KM INTERSECTION IS ASSUMED TO REACH PINE CREEK AT CHAPEL HILLS DRIVE.
428 RD 1400 .045 .013 CIR 4.5
429 KK SB-CS4
430 KM COMPUTE HYDROGRAPH FOR BASIN CS4
431 BA .053
432 LS 0 95.5
433 UD .101
LINE
ID........1........2........3........4........5........6........7........8........9........10

434 KK RR-DFVC
435 KM ROUTE FLOW THRU THE PROPOSED VILLAGE CENTER DETENTION FACILITY
436 KM POND GRADING PER THE PRELIMINARY GRADING SHOWN IN THE MDDP FOR VILLAGE
437 KM CENTER. DISCHARGE ASSUMES USE OF THE EXISTING 18" DIAMETER STUB.
438 KM WITH THE INVERT SET AT ELEVATION 73. BUREAU OF PUBLIC ROADS NOMOGRAPH
439 KM USED TO ESTIMATE OUTFLOW RATES ASSUMING INLET CONTROL.
440 RS 1 STOR 0
441 SV 000 .032 1.67 3.23 5.00 7.00
442 SE 73 74 76 78 80 82
443 SQ 0 3 13 17 20 22

444 KK AP16
445 KM COMBINE ROUTED FLOW RT-AP15 WITH THE DISCHARGE FROM THE VILLAGE CENTER POND
446 HC 2

447 KK RT-AP16
448 KM ROUTE THE FLOW IN THE CHAPEL HILLS DRIVE STORM DRAIN FROM AP16 TO AP19 IN
449 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
450 KM CROSSING
451 RD 300 .03 .013 CIR 4.5
452 KM
453 KM **
454 KM **

455 KK 56-CN1
456 KM COMPUTE RUNOFF FROM BASIN CN1 THE WATERSHED CONTRIBUTING TO THE PARK SITE AT
457 KM CHAPEL HILLS DRIVE POND (REGIONAL DETENTION FACILITY "A")
458 BA .145
459 LS 0 76.8
460 UD .190

461 KK RR-DFA
462 KM ROUTE THE FLOW FROM CN1 THROUGH THE PROPOSED DETENTION POND AT THE PARK
463 KM SITE AT CHAPEL HILLS DRIVE. STAGE STORAGE CURVE PER THE 12/22/97 GRADING PLAN
464 KM DISCHARGE CURVE REFLECTS 12" DIAMETER OUTLET PIPE CONTROL FOR NORMAL DISCHARG
465 KM AND A 100' LONG EMERGENCY SPILLWAY SET AT ELEVATION 6805.5
466 KD 3 1 100
467 RS 1 STOR 0
468 SV 0 .01 .22 .99 1.95 2.80 4.25 5.31 6.51 11.64
469 SV 15.36
470 SQ 2.35 2.54 3.00 3.73 4.35 4.75 5.36 5.50 8.39 9.01
471 SQ 279
472 SE 6796.6 6797.0 6798.0 6800.0 6802.0 6803.5 6803.51 6804 6804.1 6805.5
473 SE 6806.5

474 KK RT-DFA
475 KM ROUTE OUTFLOW FROM REGIONAL DETENTION POND "A" DOWN THE CHAPEL HILLS STORM
476 KM DRAIN FROM LEXINGTON DRIVE TO TREELAKE DRIVE
477 RD 930 .04 .013 CIRC 1.5
HEC-1 INPUT

LINE ID......1......2......3......4......5......6......7......8......9......10

478 KK SB-CN2
479 KM COMPUTE RUNOFF FROM BASIN CN2
480 BA .078
481 LS 0 75.5
482 UD .214

483 KK AP17
484 KM COMBINE ROUTED FLOW RT-DFA AND FLOW FROM BASIN CN2 AT THE INTERSECTION OF
485 KM CHAPEL HILLS DRIVE AND TEE LAKE DRIVE
486 HC 2

487 KK RT-AP17
488 KM ROUTE FLOW AT AP17 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO MULLIGAN DR.
489 RD 1400 .05 .013 CIRC 3.5

490 KK SB-CN3
491 KM COMPUTE RUNOFF FROM BASIN CN3
492 BA .043
493 LS 0 80.0
494 UD .157

495 KK AP18
496 KM COMBINE ROUTED FLOW RT-AP17 TO FLOW FROM BASIN CN3 AT INTERSECTION OF CHAPEL
497 KM HILLS DR. AND MULLIGAN DR.
498 HC 2

499 KK RT-AP18
500 KM ROUTE FLOW AT AP18 DOWN THE CHAPEL HILLS DRIVE STORM DRAIN TO AP19 IN THE
501 KM PINE CREEK MAIN CHANNEL ON THE DOWNSTREAM SIDE OF THE CHAPEL HILLS DRIVE
502 KM CROSSING. NOTE A SMALL PORTION OF BASIN CN3 IS LOCATED SOUTH OF AP18. THIS
503 KM IS CONSIDERED INSIGNIFICANT FOR THE PURPOSE OF THIS ANALYSIS.
504 RD 600 .04 .013 CIRC 3.5

505 KK AP19
506 KM COMBINE ROUTED FLOW RT-AP18 FROM THE NORTH CHAPEL HILLS DR. STORM DRAIN
507 KM WITH THE ROUTED FLOW RT-AP16 FROM THE SOUTH CHAPEL HILLS DRIVE STORM DRAIN
508 KM AND THE FLOW IN PINE CREEK MAIN CHANNEL (AP13) AT THE WEST SIDE OF THE CHAPEL
509 KM HILLS DRIVE CROSSING. FLOW THAT IS TAKEN INTO THE PINE CREEK CHANNEL FORM
510 KM STREET AT THIS POINT HAS BEEN ACCOUNTED FOR IN BASINS CN3 AND CS3. THIS WAS
511 KM DONE TO REDUCE THE COMPLEXITY OF THE MODEL.
512 HC 3

513 KK RT-AP19
514 KM ROUTE THE FLOW IN PINE CREEK MAIN CHANNEL FROM AP19 AT THE CHAPEL HILLS DRIVE
515 KM CROSSING TO AP20 AT REGIONAL DETENTION FACILITY 1 AT BRIGADE PARKWAY AND
516 KM HIGHWAY 83. USE AVERAGE SLOPES AND APPROXIMATE CROSS SECTIONS FOR ROUTING.
517 RD 750 .035 .045 TRAP 30 2
518 RD 1000 .025 .045 TRAP 120 2
519 RD 1400 .026 .045 TRAP 60 2
HEC-1 INPUT

LINE

ID......1......2......3......4......5......6......7......8......9......10

520 KK SB-P5
521 KM COMPUTE HYDROGRAPH FOR BASIN PM5
522 BA .183
523 LS 0 70.0
524 UD .185

525 KK AP20
526 KM COMBINE FLOW FROM BASIN PM5 WITH THE ROUTED FLOW IN PINE CREEK
527 HC 2

528 KK SB-PM6
529 KM COMPUTE HYDROGRAPH FOR PM6 THE AREA BETWEEN CHAPEL HILLS DR. AND DETENTION
530 KM FACILITY 1 BOUNDED BY THE GOLF COURSE AND BRIARGATE PARKWAY. NOTE: THE MDOP
531 KM FOR BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN THIS SUBBASIN. FOR THE
532 KM PURPOSE OF THIS ANALYSIS NO DETENTION IS ASSUMED TO ALLOW THE DEVELOPER THE
533 KM OPTION OF CONSTRUCTING LARGER CONVEYANCE FACILITIES TO DETENTION FACILITY
534 KM NO. 1 AND ALLOWING FREE DISCHARGE FROM THE BASIN.
535 BA .088
536 LS 0 98
537 UD .110

538 KK AP21
539 KM COMBINE FLOW FROM PM6 WITH THE FLOW IN PINE CREEK AT AP21 FOR THE TOTAL FLOW
540 KM IN PINE CREEK CHANNEL AS IT ENTERS DETENTION FACILITY NO 1
541 HC 2

542 KK SB-PM7
543 KM COMPUTE HYDROGRAPH FOR BASIN PM7 THE AREA NORTH OF DETENTION FACILITY 1
544 KM NOTE: THE MDOP FOR THE BRIARGATE BUSINESS CAMPUS REQUIRES DETENTION IN
545 KM THE NON RESIDENTIAL PORTIONS OF THIS AREA. FOR THE PURPOSE OF THIS ANALYSIS
546 KM FREE DISCHARGE FROM THE BASIN IS ASSUMED. THE RESIDENTIAL PORTION OF THE
547 KM BASIN LOCATED IN OUTSIDE THE CITY LIMITS IS ASSUMED TO BE FULLY DEVELOPED
548 KM AS 1 DU PER ACRE RESIDENTIAL.
549 BA .138
550 LS 0 76.3
551 UD .353
552 KM ***
553 KM ***BEGIN CALCULATIONS FOR THE FOCUS ON THE FAMILY STORM DRAIN WATERSHED***
554 KM ***

555 KK SB-F1
556 KM COMPUTE HYDROGRAPH FOR BASIN F1
557 BA .119
558 LS 0 78.3
559 UD .208

560 KK F1P
561 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY ASSUMING
562 KM FULL PIPE FLOW IN 36" DIA 83.44% FROM THE SAG POINT IN LEXINGTON DRIVE.
563 KM FULL FLOW CAPACITY= 123cfs
564 DT F1S
565 DI 123 150 200 250
566 DO 0 27 77 127
HEC-1 INPUT

LINE

ID......1......2......3......4......5......6......7......8......9......10

567 KK RT-F1P
568 KM ROUTE FLOW IN THE STORM DRAIN 1300 LF WEST FROM THE SAG PT. IN LEXINGTON
569 KM DRIVE TO SUMMER FIELD POND
570 RD 1300 .036 .013 CIRC 3
571 KK SB-F2
572 KM COMPUTE HYDROGRAPH FOR BASIN F2
573 BA .039
574 LS 0 74
575 UD .171
576 KK SB-F1S
577 KM RETRIEVE FLOW THAT WILL NOT FIT IN THE STORM DRAIN AT LEXINGTON DRIVE
578 DR F1S
579 KK RT-F1S
580 KM ROUTE THE EXCESS FLOW THAT IS ON THE SURFACE OF LEXINGTON DRIVE AT THE SAG
581 KM POINT OVERLAND IN A GRASS LINED SWALE TO THE SUMMERFIELD DETENTION BASIN
582 RD 1300 .037 .040 TRAP 15 6
583 KK AP-DFSF
584 KM COMBINE ROUTED FLOWS RT-F1S AND RT-F1P WITH FLOW FROM F2 AT THE SUMMER
585 KM FIELD POND. THIS IS THE TOTAL FLOW TO THE POND
586 HC 3
587 KK RR-DFSF
588 KM ROUTE THE FLOW AT AP-DFSF THROUGH THE SUMMER FIELD DETENTION BASIN.
589 KM THE INFLOW/OUTFLOW S.D. FOR THIS FACILITY IS BURIED BELOW THE POND BOTTOM.
590 KM THE POND FILLS WHEN THE CAPACITY OF THE DOWNSTREAM REACH OF S.D. IS
591 KM EXCEEDED. THIS CONFIGURATION PRESENTS A COMPLEX HYDRAULIC PROBLEM. IT IS
592 KM ASSUMED THAT UNTIL INFLOW >120cfs FLOW WILL PASS THROUGH THE STORM DRAIN.
593 KM WHEN INFLOW > 120cfs BACKWATER WILL FORM AT THE OUTLET AND THE LID ON THE
594 KM UPSTREAM MANHOLE WILL LIKELY BE LIFTED OFF AND SOME FLOW WILL ENTER THE POND
595 KM FROM THAT POINT. WHEN INFLOW>120cfs IT IS ASSUMED THAT THE HEAD LOSS AT
596 KM THE OUTLET WILL BE APPROXIMATELY 1 VELOCITY HEAD FOR THE PURPOSE OF
597 KM CALCULATING THE DISCHARGE CURVE.
598 KO 3 1 100
599 RS 1 STOR 0
600 SV 0 0.57 4.63 6.87 10.32
601 SE 92 94 96 98 100
602 SQ 120 126 131 137 144
603 KK RT-DFSF
604 KM ROUTE OUTFLOW FROM THE DETENTION BASIN IN A 48" S.D. TO RESEARCH PKWY.
605 RD 800 .018 .013 CIRC 4
606 KK SB-F3
607 KM COMPUTE HYDROGRAPH FOR BASIN F3
608 BA .114
609 LS 0 77.0
610 UD .215
HEC-1 INPUT

LINE

611 KK AP22
612 KM COMBINE ROUTED FLOW RT-DTSF TO FLOW FROM BASIN F3 AT THE INTERSECTION OF
613 KM RESEARCH PARKWAY AND SUMMERSET DRIVE.
614 HC 2

615 KK AP22P
616 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
617 KM INTERSECTION OF RESEARCH PARKWAY AND SUMMERSET DRIVE. CONTROLLING
618 KM DOWNSTREAM STORM DRAIN IS A 60" DIA RCP @ S=1%, FULL FLOW CAPACITY= 260cfs
619 KM THE DIVERTED FLOW IS ASSUMED TO RUN DOWN SUMMERSET DR. SOUTH OF RESEARCH
620 KM PARKWAY AND EVENTUALLY TO COTTONWOOD CREEK.
621 DT AP22S
622 DI 260 261 280 300 320 340 360 380
623 DQ 0 1 20 40 60 80 100 120

624 KKRT-AP22P
625 KM ROUTE THE S.D.FLOW FROM THE BRIARGATE PKWY/ SUMMERSET INTERSECTION TO THE
626 KM INTERSECTION OF RESEARCH PKWY. AND CHAPEL HILLS DR.
627 RD 2100 .02 .013 CIRC 5

628 KK SB-F4
629 KM COMPUTE HYDROGRAPH FOR BASIN F4
630 BA .038
631 LS 0 83.0
632 UD .197

633 KK RR-DFF4
634 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
635 KM RATE OF 1.6 CFS/ACRE FROM THE 11.5 AC THAT WILL BE DEVELOPED AS LI/O
636 KM DISCHARGE REDUCTION PER ACRE IS DETERMINED PER THE RATE AND AREA INCLUDED
637 KM IN THE MDP FOR BRIARGATE BUSINESS CAMPUS
638 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
639 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE SITE WILL LIKELY
640 KM FREE DISCHARGE TO THE ADJACENT STREET
641 KM DISCHARGE REDUCTION = LI/O AREA (acres)11.5 x 1.6 cfs = 18.4 cfs
642 RS 1 STOR 0
643 SV 0 .001 6 10
644 SE 100 102 104 106
645 SQ 0 70.6 70.6 70.6

646 KK AP23
647 KM COMBINE ROUTED FLOW RT-AP22P TO FLOW FROM BASIN F4 AT THE INTERSECTION OF
648 KM RESEARCH PARKWAY AND CHAPEL HILLS DR.
649 HC 2

650 KK AP23P
651 KM DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
652 KM FIRST MANHOLE (MHG) DOWNSTREAM OF THE INTERSECTION OF RESEARCH PARKWAY AND
653 KM CHAPEL HILLS DRIVE. THE MANHOLE IS LOCATED JUST UPSTREAM OF A PIPE SIZE
654 KM REDUCTION FROM 54" TO 48" DIA.. IT IS ASSUMED THAT THE MH LID WILL BE PUSHED
655 KM OFF BY THE HIGH KGL ABOVE THE TRANSITION AT THE ESTIMATED 100 YEAR PEAK
656 KM FLOW RATE. DOWNSTREAM PIPE CAPACITY IS ESTIMATED AT 298 cfs BASED ON
657 KM FULL PIPE CONVEYANCE CAPACITY OF 48" DIA RCP, SLOPE = 4.3%
658 DT AP23S
<table>
<thead>
<tr>
<th>LINE</th>
<th>ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>659</td>
<td>DI</td>
<td>298</td>
<td>300</td>
<td>325</td>
<td>350</td>
<td>375</td>
<td>400</td>
<td>425</td>
<td>450</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>DQ</td>
<td>0</td>
<td>2</td>
<td>27</td>
<td>52</td>
<td>77</td>
<td>102</td>
<td>127</td>
<td>152</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>661</td>
<td></td>
<td>KKRT-AP23P</td>
</tr>
<tr>
<td>662</td>
<td>KM</td>
<td>ROUTE THE FLOW IN THE STORM DRAIN FROM THE RESEARCH PKWY/CHAPEL HILLS DR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>663</td>
<td>KM</td>
<td>INTERSECTION TO THE INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>664</td>
<td>KM</td>
<td>FAMILY S.D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>RD</td>
<td>2100</td>
<td>.044</td>
<td>.013</td>
<td>CIRC</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>666</td>
<td></td>
<td>KK AP23S</td>
</tr>
<tr>
<td>667</td>
<td>KM</td>
<td>RETRIEVE THE DIVERTED FLOW AT MH8 JUST DOWNSTREAM OF THE INTERSECTION OF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>668</td>
<td>KM</td>
<td>RESEARCH PARKWAY AND CHAPEL HILLS DRIVE. THIS IS SURFACE FLOW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>669</td>
<td>DR</td>
<td>AP23S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>670</td>
<td></td>
<td>KKRT-AP23S</td>
</tr>
<tr>
<td>671</td>
<td>KM</td>
<td>ROUTE THE SURFACE FLOW AT MH8 ACROSS THE FOCUS SITE TO EXPLORER DRIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>KM</td>
<td>ASSUME FLOW WILL BE SHALLOW AND WIDE THROUGH THE PARKING LOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>673</td>
<td>RD</td>
<td>1550</td>
<td>.042</td>
<td>.015</td>
<td>TRAP</td>
<td>75</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>674</td>
<td></td>
<td>KK SB-F5</td>
</tr>
<tr>
<td>675</td>
<td>KM</td>
<td>COMPUTE HYDROGRAPH FOR BASIN F5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>676</td>
<td>BA</td>
<td>.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>677</td>
<td>LS</td>
<td>0</td>
<td>95.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>UD</td>
<td>.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>679</td>
<td></td>
<td>KK RR DFR5</td>
</tr>
<tr>
<td>680</td>
<td>KM</td>
<td>ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>681</td>
<td>KM</td>
<td>RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>682</td>
<td>KM</td>
<td>AND HISTORIC PEAK 100 YR FLOW RATE PER THE ORIGINAL DBPS CRITERIA FOR LI/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>683</td>
<td>KM</td>
<td>LAND USE. HISTORIC 100 YR PEAK ESTIMATED AT 1.5 CFS/AC. FULLY DEVELOPED 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>KM</td>
<td>YR PEAK ESTIMATED AT 5.6 CFS/AC. ESTIMATED REQUIRED DETENTION =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>685</td>
<td>KM</td>
<td>(5.6-1.5)*.35=1.85AC=50ft TOTAL Gln=2325cfs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>686</td>
<td>KM</td>
<td>THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>687</td>
<td>KM</td>
<td>THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>688</td>
<td>KM</td>
<td>DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>689</td>
<td>RS</td>
<td>1</td>
<td>STOR</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>SV</td>
<td>0</td>
<td>.001</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>691</td>
<td>SE</td>
<td>100</td>
<td>102</td>
<td>104</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>SQ</td>
<td>0</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>693</td>
<td></td>
<td>KK AP24</td>
</tr>
<tr>
<td>694</td>
<td>KM</td>
<td>COMBINE THE ROUTED FLOW IN THE S.D.(RTAP102) TO FLOW FROM FF1 AND THE SURFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>695</td>
<td>KM</td>
<td>FLOW THAT WAS DIVERTED THROUGH THE FOCUS SITE FROM MH8(AP102A) AT THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>696</td>
<td>KM</td>
<td>INTERSECTION OF EXPLORER DRIVE AND THE FOCUS ON THE FAMILY STORM DRAIN.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>697</td>
<td>HC</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>698</td>
<td></td>
<td>KK AP24P</td>
</tr>
<tr>
<td>699</td>
<td>KM</td>
<td>DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>KM</td>
<td>INTERSECTION OF EXPLORER DRIVE AND TELSTAR DRIVE, DOWNSTREAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>KM</td>
<td>STORM DRAIN IS A 66" DIA RCF @ S=1.1%, FULL FLOW CAPACITY= 350cfs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>KM</td>
<td>ASSUME THIS DIVERTED FLOW WILL GO WEST DOWN TELSTAR DRIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>DT</td>
<td>AP24S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>DI</td>
<td>350</td>
<td>351</td>
<td>370</td>
<td>390</td>
<td>410</td>
<td>430</td>
<td>450</td>
<td>470</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>DQ</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>
HEC-1 INPUT

LINE 10........1........2........3........4........5........6........7........8........9........10

706 KKRT-AP24P
707 KM ROUTE THE FLOW IN THE FOCUS STORM DRAIN FROM AP24 AT THE INTERSECTION OF
708 KM EXPLORER DRIVE AND THE FOCUS S.O. TO AP25 AT THE INTERSECTION OF EXPLORER
709 KM DRIVE & BRIARGATE PKWY
710 RD 800 .011 .013 CIRC 5.5

711 KK SB-F6
712 KM COMPUTE HYDROGRAPH FOR BASIN F6
713 BA .038
714 LS 0 98.0
715 UD .106

716 KK RR-DDFF6
717 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
718 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
719 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
720 KM FULLY DEVELOPED ESTIMATED AT 6.0 CFS/AC. ESTIMATED REQUIRED DETENTION =
721 KM ((6.0-1.5)*.35*21.5AC=34cfs TOTAL Qin=138cfs
722 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
723 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
724 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
725 RS 1 STOR 0
726 SV 0 .001 6 10
727 SE 100 102 104 106
728 SQ 0 104 104 104

729 KK SB-F7
730 KM COMPUTE HYDROGRAPH FOR BASIN F7
731 BA .052
732 LS 0 93.0
733 UD .137

734 KK RR-DDFF7
735 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
736 KM RATE BASED ON APPROXIMATELY 35% OF THE DIFFERENCE BETWEEN THE DEVELOPED
737 KM AND HISTORIC PEAK 100 YR FLOW RATE. HISTORIC ESTIMATED AT 1.5 CFS/AC.
738 KM FULLY DEVELOPED ESTIMATED AT 5.2 CFS/AC. ESTIMATED REQUIRED DETENTION =
739 KM ((5.2-1.5)*.35*29AC=38cfs TOTAL Qin=170cfs
740 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
741 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN DISCHARGES
742 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN
743 RS 1 STOR 0
744 SV 0 .001 6 10
745 SE 100 102 104 106
746 SQ 0 132 132 132

747 KK AP25
748 KM COMBINE ROUTED FLOW RT-AP25P TO CONTROLLED FLOW FROM BASINS F6 AND F7
749 KM AT THE INTERSECTION OF EXPLORER DR AND BRIARGATE PKWY.
750 HC 3
HEC-1 INPUT

LINE ID........1........2........3........4........5........6........7........8........9........10

751 KK AP25P
752 KK DIVERT FLOW IN EXCESS OF THE DOWNSTREAM STORM DRAIN CAPACITY AT THE
753 KM INTERSECTION OF EXPLORER DR. AND BRIARGATE PARKWAY. CONTROL APPEARS TO
754 KM BE DOWNSTREAM 5454 DIA S.D. @ 5.5% SLOPE, FULL PIPE CAPACITY=461cfs
755 KM DIVERTED FLOW IS ASSUMED TO FLOW DOWN BRIARGATE PARKWAY TO THE SUMP
756 KM ADJACENT TO FACILITY #1
757 DT AP25S
758 DL 461 464 475 500 525 550 575 600 625
759 DG 0 1 14 39 64 89 114 139 164

760 KKRT-AP25P
761 KM ROUTE THE FLOW IN THE S.D.FROM THE INTERSECTION OF EXPLORER & BRIARGATE
762 KM PARKWAY TO DETENTION FACILITY 1 AT BRIARGATE PKWY & HIGHWAY 83
763 RD 1250 .011 .013 CIRC 5.5

764 KK SB-PMB
765 KM COMPUTE HYDROGRAPH FOR BASIN PMB THE PORTION OF BRIARGATE PARKWAY BETWEEN
766 KM EXPLORER DR. AND HIGHWAY 83
767 BA .014
768 LS 0 98
769 UD .100

770 KK AP-DF#1
771 KM ADD THE FLOW FROM THE FOCUS ON THE FAMILY STORM DRAIN, BASINS PM7 AND PM8,
772 KM AND FLOW IN PINE CREEK FOR THE TOTAL INFLOW TO DETENTION FACILITY 1
773 HC 4

774 KK RR-DF#1
775 KM ROUTE FLOW THRU DETENTION FACILITY NO.1. VOLUME MODIFIED TO REFLECT PROPOSED
776 KM ENLARGEMENT. PROPOSED ENLARGEMENT IS TO ADD A MINIMUM OF 0.65 ACRES OF SURFAC
777 KM ENLARGEMENT. AREA TO EACH OF THE CONTOURS AT OR ABOVE ELEVATION 58. CUTLET MODELED
778 KM ASSUMING THE TOP 7.5' OF THE ENTRANCE TO THE 10'X 12'S HIGH BOX CULVERT IS
779 KM BLOCKED AND A NEW 12' WIDE OPENING IS CREATED W/ INVERT AT 67.2
780 KM OUTFLOW CURVE CALCULATED WITH A SPREADSHEET TREATING THE LOWER OPENING AS
781 KM A SUBMERGED ORIFICE WITH C=60, h=POUND DEPTH - NORMAL DEPTH IN THE OUTFALL
782 KM AND THE UPPER OPENING TO ELEVATION 73.0 TREATED AS A SHARP CRESTED WEIR WITH
783 KM A FULL LENGTH OF 12.77' (THE SkEW LENGTH) ADJUSTED 0.2h FOR END CONTRACTIONS
784 KM AND C=3.22+0.40(h/P) WHERE P=14.2, ABOVE ELEVATION 73.0 THE TOP CULVERT
785 KM STRUCTURE IS ASSUMED TO TERMINATE WITHOUT A TOP AND THUS ADDITIONAL FLOW CAN
786 KM OVER TOP THE SIDES AND BACK OF THE ASSUMED 3 SIDED STRUCTURE 12.77 x 10
787 KD 3 1
788 RS 1 STOR 0
789 SA 0 0.18 0.48 4.83 5.23 5.52 5.83 6.13 6.44 6.78
790 SA 7.14 7.34 7.53 7.73 7.95
791 SE 54.0 55.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0
792 SE 72.0 73.0 74.0 75.0 76.0
793 SQ 0 105 194 275 344 401 451 496 560 747
794 SQ 998 1142 1247 1750 2100
LINE

ID......1......2......3......4......5......6......7......8......9......10

795 KK AP25S
796 KN RETRIEVE THE DIVERTED FLOW AT THE INTERSECTION OF BRIARGATE PARKWAY AND
797 KM EXPLORER DRIVE. THIS IS FLOW IN THE STREET.
798 DR AP25S

799 KKRT-AP25S
800 KM ROUTE THE SURFACE FLOW IN BRIARGATE PARKWAY DOWN BRIARGATE PARKWAY TO PINE
801 KM CREEK. ASSUME THIS FLOW ENTERS THE CHANNEL AT THE OUTLET FROM DETENTION
802 KM FACILITY #1.
803 RD 1400 .043 .015 TRAP 75 .01

804 KK AP26
805 KM COMBINE ROUTED FLOW RT-AP25S TO THE OUTFLOW FROM DF#1 AT THE INTERSECTION OF
806 KM BRIARGATE PKWY. AND PINE CREEK
807 HC 2

808 KK RT-AP26
809 KM ROUTE THE COMBINED FLOW FROM AP26 AT BRIARGATE PARKWAY DOWN PINE CREEK TO
810 KM THE INTERSECTION OF PINE CREEK AND HIGHWAY 83. USE AVERAGE
811 KM APPROXIMATE SECTION AND SLOPE FOR ROUTING
812 RD 1450 .019 .045 TRAP 40 2

813 KK SB-PM9
814 KM COMPUTE HYDROGRAPH FOR BASIN PM9
815 BA .060
816 LS 0 93
817 UD .120

818 KK AP27
819 KM COMBINE THE FLOW FROM BASIN PM9 AND THE ROUTED FLOW IN PINE CREEK (RT-AP26) A
820 KM AT THE UPSTREAM SIDE OF HIGHWAY 83.
821 HC 2

822 KK SB-PM10
823 KM COMPUTE HYDROGRAPH FOR BASIN PM10
824 BA .048
825 LS 0 98
826 UD .092

827 KKRDFPM10
828 KM ROUTE FLOW THRU A POND ROUTING ROUTINE TO REFLECT REDUCTION IN PEAK FLOW
829 KM RATE TO THE APPROXIMATE PEAK FLOW RATE DISCHARGE GOAL FROM THE BASIN
830 KM AS SHOWN IN THE FINAL DRAINAGE REPORT FOR BRIARGATE BUSINESS CAMPUS
831 KM FILING 13 AS APPROVED OCT 31, 1996
832 KM THE ROUTING ROUTINE ONLY REGULATES THE PEAK DISCHARGE AND DOES NOT LAG
833 KM THE DISCHARGE. THIS IS APPROPRIATE AS A PORTION OF THE BASIN MAY DISCHARGE
834 KM DIRECTLY TO THE ADJACENT STREET AND STORM DRAIN.
835 KM DISCHARGE FROM THE BASIN PER THE FINAL DRAINAGE REPORT=140 cfs
836 RS 1 STOR 0
837 SV 0 001 .6 1.5
838 SE 100 102 104 106
839 SQ 0 140 140 140
KK RT-PM10
KM ROUTE THE FLOW IN THE S.O. FROM THE LOW POINT IN TELESTAR DR. TO THE EXISTING
KM OUTFALL TO PINE CREEK JUST UPSTREAM OF HIGHWAY 83.
RD 1000 .025 .013 CIRC 4.0

KK SB-PM11
KM COMPUTE HYDROGRAPH FOR BASIN PM11
BA .041
LS 0 98
UD .096

KK AP24S
KM RETRIEVE THE FLOW THAT WAS IN EXCESS OF THE STORM DRAIN CAPACITY AT THE
KM INTERSECTION OF EXPLORER DRIVE AND TELSTAR DRIVE.(AP24S)
DR AP24S

KKRT-AP24S
KM ROUTE THE RETRIEVED FLOW FROM AP24 DOWN TELSTAR DRIVE TO THE SUMP THEN
KM ACROSS BBC FILING 19 TO AP28 IN PINE CREEK.
RD 2200 .05 .015 TRAP 40 01

KK AP28
KM COMBINE THE FLOW FROM BASIN PM11 WITH THE ROUTED SURFACE FLOW FROM THE
KM INTERSECTION OF TELSTAR DR. AND EXPLORER DRIVE (RT-AP24S), THE FLOW IN
KM PINE CREEK AT AP27, AND THE ROUTED FLOW FROM BASIN PM10.
KM FLOW IS COMBINED IN PINE CREEK AT THE UPSTREAM SIDE OF THE BOX CULVERT
KM UNDER HIGHWAY 83. THIS REPRESENTS THE TOTAL FLOW TO PINE CREEK FROM THE
KM BRIARGATE AREA
KD 3 1
HC 4
ZZ
SCHEMATIC DIAGRAM OF STREAM NETWORK

INPUT LINE (V) ROUTING (--->) DIVERSION OR PUMP FLOW

NO. (.) CONNECTOR (<>--) RETURN OF DIVERTED OR PUMPED FLOW

13 SB-IPN1
 V
 V
33 RT-IPN1
 .
36 . SB-IPN2
 .
 .
41 AP11.----------
 V
 V
44 RT-API1

47 . SB-IPN3
 .
 .
52 AP12.----------
 V
 V
55 RT-API2

58 . SB-IPN4
 .
 .
63 AP13.----------
 V
 V
66 RT-API3

69 . SB-IPN5
 .
 .
77 . . SB-PN9
 . .
82 AP-4.----------
 V
 V
85 RT-API4

89 . SB-PN11
 .
 .
94 . . SB-PN12
 . .
 . .
99 . . . SB-PN13
 . . .

<table>
<thead>
<tr>
<th>Page</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
<td></td>
<td>SB-PS10</td>
</tr>
<tr>
<td>198</td>
<td>APDFC</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>RR-DFC</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>SB-PS6</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>RT-PS6</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>SB-PS7</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>API7</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>RT-API7</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>SB-PS8</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>SB-PS9</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>API8</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>RT-DPI8</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>SB-PS10</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>API9</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>RT-API9</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>SB-PS11</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>SB-PS12</td>
<td></td>
</tr>
<tr>
<td>277</td>
<td>APDFB</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>RR-DFB</td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>RT-DFB</td>
<td></td>
</tr>
</tbody>
</table>
V
RR-DFCS3

AP15
V
V
RT-AP15

SB-CS4
V
V
RR-DFVC

AP16
V
V
RT-AP16

SB-CN1
V
V
RR-DFA
V
V
RT-DFA

SB-CN2

AP17
V
V
RT-AP17

SB-CN3

AP18
V
V
RT-AP18

V
V
RT-AP19

SB-PM5

AP20
818 AP27.............

822 SB·PM10

827 RRDPFM10

840 RT·PM10

844 SB·PM11

852 AP24S

849 AP24S

853 RT·AP24S

857 AP28........................

***) RUNOFF ALSO COMPUTED AT THIS LOCATION
PINE CREEK DRAINAGE BASIN - 24HR,(TYPE 110 AND 100 YEAR STORM)
FILE PCDBPSI.DAT
INTERIM CONDITION MODEL
MODEL MODIFIED FOR 8-98 REVISION LAST UPDATE: 8/5/98
BASINS PN1 THROUGH PN8, PN10, AND PS1 THROUGH PS9 IN UNDEVELOPED OR
PARTIAL DEVELOPED CONDITION. ALL OTHER BASINS ASSUMED TO BE FULLY DEVELOPED.
DETECTION FACILITY "C" ASSUMED TO BE CONSTRUCTED TO DEVELOPED CONDITION
REQUIRED CAPACITY BUT WITHOUT AN OUTFALL SO IT FUNCTIONS AS A TEMPORARY
RETENTION POND. DETENTION FACILITIES "A", "B", AND "E" ARE ASSUMED TO
BE CONSTRUCTED TO THE DEVELOPED CONDITION REQUIREMENTS.

12 ID OUTPUT CONTROL VARIABLES
 IPRT 5 PRINT CONTROL
 IPLOT 0 PLOT CONTROL
 QSCAL 0 HYDROGRAPH PLOT SCALE

1IT HYDROGRAPH TIME DATA
 NMIN 3 MINUTES IN COMPUTATION INTERVAL
 IDATE 1 0 STARTING DATE
 ITIME 0000 STARTING TIME
 NQ 300 NUMBER OF HYDROGRAPH ORDINATES
 NDATE 1 0 ENDING DATE
 NTIME 1457 ENDING TIME
 ICENT 19 CENTURY MARK

COMPUTATION INTERVAL 0.05 HOURS
TOTAL TIME BASE 14.95 HOURS

ENGLISH UNITS
DRAINAGE AREA SQUARE MILES
PRECIPITATION DEPTH INCHES
LENGTH, ELEVATION FEET
FLOW CUBIC FEET PER SECOND
STORAGE VOLUME ACRE-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT

* * *
108 KK * RR-DFE *
* *

115 K
OUTPUT CONTROL VARIABLES
IPRNT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

116 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

117 SV
STORAGE 0.0 0.0 1.3 3.9 6.9 10.3 14.1 18.2 22.8 27.9

118 SE
ELEVATION 784.00 786.00 788.00 790.00 792.00 794.00 796.00 798.00 800.00 802.00

119 SQ

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFE

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
267. 6.80 (CFS) 124. 56. 56. 56.
(INCHES) 1.179 1.317 1.317 1.317
(AC-FT) 62. 69. 69. 69.

SAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
19. 6.80 6. 2. 2. 2.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
798.51 6.80 790.46 787.05 787.05 787.05

CUMULATIVE AREA = 0.98 SQ MI

*** ***
206 KO

OUTPUT CONTROL VARIABLES
IPRNT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

207 RS
STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVIRC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

208 SV
STORAGE 0.0 2.7 9.7 18.6 28.0 38.2 49.0 60.5 72.8 85.8
99.7

210 SE
ELEVATION 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00
82.00

212 SQ
DISCHARGE 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

*** *** *** *** ***

HYDROGRAPH AT STATION RR-DFC

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
0. 0.05 (CFS) 0. 0. 0. 0.
(INCHES) 0.000 0.000 0.000 0.000
(AC-FT) 0. 0. 0. 0.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
72.63 14.95 71.80 67.26 67.26 67.26

CUMULATIVE AREA = 0.70 SQ MI

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*
282 KK *
* RR-DFB *
*

209 KO

OUTPUT CONTROL VARIABLES
IPRNT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
OSCAL 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

290 RS STORAGE ROUTING
NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

291 SV STORAGE
 0.0 0.1 1.2 3.3 5.8 8.7 12.1 15.9 20.1 23.6
 24.8 30.0

293 SE ELEVATION
 71.20 72.00 74.00 76.00 78.00 80.00 82.00 84.00 86.00 87.60
 88.00 90.00

295 SQ DISCHARGE
 0.0 22.0 73.0 130.0 169.0 202.0 236.0 260.0 285.0 301.0
 371.0 1222.0

HYDROGRAPH AT STATION RR-DFB

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
266. 6.70 (CFS) 111. 49. 49. 49.
(INCHES) 0.678 0.754 0.754 0.754
(AC-FT) 55. 61. 61. 61.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
17. 6.70 5. 2. 2. 2.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
84.45 6.70 76.03 73.32 73.32 73.32

CUMULATIVE AREA = 1.52 SQ MI

* *
461 KK * RR-DFB *
* *

466 KO OUTPUT CONTROL VARIABLES
IPRINT 5 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCAL 100 HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA
467 RS

STORAGE ROUTING

NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
X 0.00 WORKING R AND D COEFFICIENT

468 SV

STORAGE 0.0 0.0 0.2 1.0 2.0 2.8 4.3 5.3 6.5 11.6
15.4

470 SQ

DISCHARGE 2. 3. 3. 4. 4. 5. 5. 6. 8. 9.
279.

472 SE

ELEVATION 6796.60 6797.00 6798.00 6800.00 6802.00 6803.50 6803.51 6804.00 6804.10 6805.50
6806.50

HYDROGRAPH AT STATION RR-DF

PEAK FLOW TIME MAXIMUM AVERAGE FLOW
(CFS) (HR) 6-HR 24-HR 72-HR 14.95-HR
9. 8.20 (CFS) 9. 6. 6. 6.
(INCHES) 0.573 1.001 1.001 1.001
(AC-FT) 4. 8. 8. 8.

PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE
(AC-FT) (HR) 6-HR 24-HR 72-HR 14.95-HR
11. 0.30 11. 6. 6. 6.

PEAK STAGE TIME MAXIMUM AVERAGE STAGE
(FEET) (HR) 6-HR 24-HR 72-HR 14.95-HR
6805.44 8.30 6805.31 6801.83 6801.83 6801.83

CUMULATIVE AREA = 0.14 SQ MI

** **

* *
587 KK
* RR-DFSF *
* *

598 KO

OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLOT 1 PLOT CONTROL
QSCAL 100. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

599 RS

STORAGE ROUTING

NSTPS 1 NUMBER OF SUBREACHES
ITYP STOR TYPE OF INITIAL CONDITION
RSVRIC 0.00 INITIAL CONDITION
<table>
<thead>
<tr>
<th>Station</th>
<th>Type</th>
<th>Value</th>
<th>0.0</th>
<th>6.0</th>
<th>4.6</th>
<th>6.9</th>
<th>10.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Elevation</td>
<td></td>
<td>92.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Discharge</td>
<td></td>
<td>120.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH AT STATION RR-DFFSF

<table>
<thead>
<tr>
<th>Peak Flow</th>
<th>Time (HR)</th>
<th>Maximum Average Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CFS)</td>
<td>(HR)</td>
<td>6-HR</td>
</tr>
<tr>
<td>130.0</td>
<td>6.35</td>
<td>121.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CFS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(INCHES)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AC-FT)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak Stage</th>
<th>Time (HR)</th>
<th>Maximum Average Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FEET)</td>
<td>(HR)</td>
<td>6-HR</td>
</tr>
<tr>
<td>95.57</td>
<td>6.35</td>
<td>92.44</td>
</tr>
</tbody>
</table>

Cumulative Area = 0.16 SQ MI

OUTPUT CONTROL VARIABLES

- IPRINT = 3 PRINT CONTROL
- IPRINT = 1 PLOT CONTROL
- OSCALE = 0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

<table>
<thead>
<tr>
<th>Storage Routing</th>
<th>Number of SubBreaches</th>
<th>Initial Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSTPS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ITYP</td>
<td>STOR</td>
<td></td>
</tr>
<tr>
<td>RSVRIC</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0</th>
<th>0.2</th>
<th>0.5</th>
<th>4.8</th>
<th>5.2</th>
<th>5.5</th>
<th>5.8</th>
<th>6.1</th>
<th>6.4</th>
<th>6.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.1</td>
<td>7.3</td>
<td>7.5</td>
<td>7.7</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation</th>
<th>54.00</th>
<th>55.00</th>
<th>56.00</th>
<th>58.00</th>
<th>60.00</th>
<th>62.00</th>
<th>64.00</th>
<th>66.00</th>
<th>68.00</th>
<th>70.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.00</td>
<td>73.00</td>
<td>74.00</td>
<td>75.00</td>
<td>76.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPUTED STORAGE-ELEVATION DATA

| STORAGE | 0.00 | 0.06 | 0.38 | 4.93 | 14.99 | 25.74 | 37.09 | 49.05 | 61.62 | 74.83 |
| ELEVATION | 54.00 | 55.00 | 56.00 | 58.00 | 60.00 | 62.00 | 64.00 | 66.00 | 68.00 | 70.00 |

| STORAGE | 88.75 | 95.99 | 103.43 | 111.06 | 118.90 |
| ELEVATION | 72.00 | 73.00 | 74.00 | 75.00 | 76.00 |

*** WARNING *** MODIFIED PULS ROUTING MAY BE NUMERICALLY UNSTABLE FOR OUTFLOWS BETWEEN 0. TO 105.
THE ROUTED HYDROGRAPH SHOULD BE EXAMINED FOR OSCILLATIONS OR OUTFLOWS GREATER THAN PEAK INFLOWS.
THIS CAN BE CORRECTED BY DECREASING THE TIME INTERVAL OR INCREASING STORAGE (USE A LONGER REACH.)

HYDROGRAPH AT STATION RR-DF#1

PEAK FLOW	TIME	MAXIMUM AVERAGE FLOW				
(CFS)	(HR)	(CFS)	6-HR	24-HR	72-HR	14.95-HR
1130.	6.65	669.	1.404	2.021	2.021	2.021

PEAK STORAGE	TIME	MAXIMUM AVERAGE STORAGE				
(AC-FT)	(HR)	(INCHES)	61.	27.	27.	27.
95.	6.65	332.				

PEAK STAGE	TIME	MAXIMUM AVERAGE STAGE			
(FEET)	(HR)	(FEET)	61.09	61.09	61.09
72.91	6.65	67.69			

CUMULATIVE AREA = 4.43 SQ MI

* *
857 KK * AP28 *
* *

864 KO OUTPUT CONTROL VARIABLES
IPRINT 3 PRINT CONTROL
IPLT 1 PLOT CONTROL
QSCAL 0, HYDROGRAPH PLOT SCALE

865 KC HYDROGRAPH COMBINATION
ICONP 4 NUMBER OF HYDROGRAPHS TO COMBINE

HYDROGRAPH AT STATION AP28

<table>
<thead>
<tr>
<th>PEAK FLOW (CFS)</th>
<th>TIME (HR)</th>
<th>MAXIMUM AVERAGE FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1195.</td>
<td>6.05</td>
<td>6-HR</td>
</tr>
<tr>
<td>(INCHES)</td>
<td>(CFS)</td>
<td>743.</td>
</tr>
<tr>
<td>(AC-FT)</td>
<td></td>
<td>1,506</td>
</tr>
</tbody>
</table>

CUMULATIVE AREA = 4.59 SQ MI
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>PEAK FLOW</th>
<th>TIME OF PEAK</th>
<th>AVERAGE FLOW FOR MAXIMUM PERIOD</th>
<th>BASIN AREA</th>
<th>MAX STAGE</th>
<th>MAX STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN1</td>
<td>116.</td>
<td>6.25</td>
<td>18.</td>
<td>8.</td>
<td>8.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-1PN1</td>
<td>115.</td>
<td>6.40</td>
<td>18.</td>
<td>8.</td>
<td>8.</td>
<td>0.16</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN2</td>
<td>140.</td>
<td>6.30</td>
<td>23.</td>
<td>11.</td>
<td>11.</td>
<td>0.23</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP11</td>
<td>244.</td>
<td>6.35</td>
<td>42.</td>
<td>19.</td>
<td>19.</td>
<td>0.39</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP11</td>
<td>243.</td>
<td>6.45</td>
<td>42.</td>
<td>19.</td>
<td>19.</td>
<td>0.39</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN3</td>
<td>102.</td>
<td>6.15</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.12</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP12</td>
<td>296.</td>
<td>6.35</td>
<td>55.</td>
<td>25.</td>
<td>25.</td>
<td>0.51</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP12</td>
<td>296.</td>
<td>6.40</td>
<td>55.</td>
<td>25.</td>
<td>25.</td>
<td>0.51</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN4</td>
<td>131.</td>
<td>6.10</td>
<td>15.</td>
<td>7.</td>
<td>7.</td>
<td>0.14</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP13</td>
<td>338.</td>
<td>6.40</td>
<td>69.</td>
<td>31.</td>
<td>31.</td>
<td>0.66</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP13</td>
<td>335.</td>
<td>6.45</td>
<td>69.</td>
<td>31.</td>
<td>31.</td>
<td>0.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-1PN5</td>
<td>42.</td>
<td>6.10</td>
<td>4.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN9</td>
<td>61.</td>
<td>6.05</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.04</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP-4</td>
<td>355.</td>
<td>6.45</td>
<td>80.</td>
<td>36.</td>
<td>36.</td>
<td>0.74</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP4</td>
<td>351.</td>
<td>6.50</td>
<td>80.</td>
<td>36.</td>
<td>36.</td>
<td>0.74</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN11</td>
<td>150.</td>
<td>6.10</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.08</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN12</td>
<td>60.</td>
<td>6.05</td>
<td>6.</td>
<td>2.</td>
<td>2.</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN13</td>
<td>215.</td>
<td>6.10</td>
<td>23.</td>
<td>10.</td>
<td>10.</td>
<td>0.13</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>APDFE</td>
<td>643.</td>
<td>6.15</td>
<td>125.</td>
<td>56.</td>
<td>56.</td>
<td>0.98</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFE</td>
<td>267.</td>
<td>6.80</td>
<td>124.</td>
<td>56.</td>
<td>56.</td>
<td>0.98</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFE</td>
<td>267.</td>
<td>6.85</td>
<td>124.</td>
<td>56.</td>
<td>56.</td>
<td>0.98</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN14</td>
<td>50.</td>
<td>6.05</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.03</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PN14</td>
<td>49.</td>
<td>6.05</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.03</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN15</td>
<td>120.</td>
<td>6.10</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.07</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP-5</td>
<td>340.</td>
<td>6.15</td>
<td>142.</td>
<td>64.</td>
<td>64.</td>
<td>1.08</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP5</td>
<td>340.</td>
<td>6.15</td>
<td>142.</td>
<td>64.</td>
<td>64.</td>
<td>1.08</td>
</tr>
<tr>
<td>Hydrograph at</td>
<td>Name</td>
<td>Slope</td>
<td>Volume</td>
<td>Yr</td>
<td>Flow</td>
<td>Duration</td>
<td>Peak Flow</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>SB-IPS1</td>
<td>94.</td>
<td>6.30</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>RT-IPS1</td>
<td>93.</td>
<td>6.40</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>SB-IPS2</td>
<td>66.</td>
<td>6.25</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>SB-IPS3</td>
<td>88.</td>
<td>6.15</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>RT-IPS3</td>
<td>86.</td>
<td>6.30</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>SB-IPS4</td>
<td>118.</td>
<td>6.20</td>
<td>17.</td>
<td>8.</td>
<td>8.</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>API14</td>
<td>192.</td>
<td>6.30</td>
<td>28.</td>
<td>13.</td>
<td>13.</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>RT-API14</td>
<td>190.</td>
<td>6.40</td>
<td>28.</td>
<td>12.</td>
<td>12.</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>SB-IPS5</td>
<td>84.</td>
<td>6.30</td>
<td>14.</td>
<td>6.</td>
<td>6.</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>API15</td>
<td>265.</td>
<td>6.40</td>
<td>42.</td>
<td>19.</td>
<td>19.</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>RT-API15</td>
<td>265.</td>
<td>6.50</td>
<td>42.</td>
<td>19.</td>
<td>19.</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>API16</td>
<td>399.</td>
<td>6.50</td>
<td>68.</td>
<td>31.</td>
<td>31.</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>SB-PS10</td>
<td>66.</td>
<td>6.05</td>
<td>7.</td>
<td>3.</td>
<td>3.</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>APDRC</td>
<td>409.</td>
<td>6.50</td>
<td>74.</td>
<td>34.</td>
<td>34.</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>RR-DRC</td>
<td>0.</td>
<td>0.05</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.95</td>
</tr>
<tr>
<td></td>
<td>SB-IPS6</td>
<td>85.</td>
<td>6.25</td>
<td>14.</td>
<td>6.</td>
<td>6.</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>RT-IPS6</td>
<td>87.</td>
<td>6.50</td>
<td>14.</td>
<td>6.</td>
<td>6.</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>SB-IPS7</td>
<td>160.</td>
<td>6.20</td>
<td>22.</td>
<td>10.</td>
<td>10.</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>API17</td>
<td>186.</td>
<td>6.35</td>
<td>35.</td>
<td>16.</td>
<td>16.</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>RT-API17</td>
<td>184.</td>
<td>6.45</td>
<td>35.</td>
<td>16.</td>
<td>16.</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>SB-IPS8</td>
<td>71.</td>
<td>6.15</td>
<td>9.</td>
<td>4.</td>
<td>4.</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>SB-IPS9</td>
<td>106.</td>
<td>6.05</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>API18</td>
<td>281.</td>
<td>6.20</td>
<td>55.</td>
<td>25.</td>
<td>25.</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>RT-DP18</td>
<td>278.</td>
<td>6.20</td>
<td>55.</td>
<td>25.</td>
<td>25.</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>SB-PS10</td>
<td>191.</td>
<td>6.05</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>API19</td>
<td>427.</td>
<td>6.15</td>
<td>75.</td>
<td>34.</td>
<td>34.</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>RT-API19</td>
<td>422.</td>
<td>6.25</td>
<td>75.</td>
<td>34.</td>
<td>34.</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>SB-PS11</td>
<td>126.</td>
<td>6.05</td>
<td>13.</td>
<td>6.</td>
<td>6.</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>SB-PS12</td>
<td>189.</td>
<td>6.10</td>
<td>23.</td>
<td>19.</td>
<td>10.</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>APDFB</td>
<td>663.</td>
<td>6.20</td>
<td>111.</td>
<td>49.</td>
<td>49.</td>
<td>1.52</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFB</td>
<td>266.</td>
<td>6.70</td>
<td>111.</td>
<td>49.</td>
<td>49.</td>
<td>1.52</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFB</td>
<td>266.</td>
<td>6.73</td>
<td>111.</td>
<td>49.</td>
<td>49.</td>
<td>1.52</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PS13</td>
<td>122.</td>
<td>6.05</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.06</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP11</td>
<td>278.</td>
<td>6.60</td>
<td>123.</td>
<td>55.</td>
<td>55.</td>
<td>1.58</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP11</td>
<td>278.</td>
<td>6.60</td>
<td>123.</td>
<td>55.</td>
<td>55.</td>
<td>1.58</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP5A</td>
<td>615.</td>
<td>6.15</td>
<td>265.</td>
<td>118.</td>
<td>118.</td>
<td>2.66</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP5A</td>
<td>612.</td>
<td>6.15</td>
<td>265.</td>
<td>118.</td>
<td>118.</td>
<td>2.66</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM1</td>
<td>107.</td>
<td>6.10</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-PM1</td>
<td>107.</td>
<td>6.10</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM2</td>
<td>139.</td>
<td>6.20</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.15</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM3</td>
<td>99.</td>
<td>6.15</td>
<td>12.</td>
<td>5.</td>
<td>5.</td>
<td>0.07</td>
</tr>
<tr>
<td>4 COMBINED AT</td>
<td>AP12</td>
<td>945.</td>
<td>6.15</td>
<td>308.</td>
<td>138.</td>
<td>138.</td>
<td>2.94</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP12</td>
<td>938.</td>
<td>6.20</td>
<td>308.</td>
<td>137.</td>
<td>137.</td>
<td>2.94</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PN4</td>
<td>180.</td>
<td>6.05</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.11</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP13</td>
<td>1069.</td>
<td>6.15</td>
<td>326.</td>
<td>146.</td>
<td>146.</td>
<td>3.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS1</td>
<td>90.</td>
<td>6.05</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-CS1</td>
<td>90.</td>
<td>6.10</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.05</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS2</td>
<td>254.</td>
<td>6.00</td>
<td>29.</td>
<td>13.</td>
<td>13.</td>
<td>0.07</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS2</td>
<td>194.</td>
<td>5.70</td>
<td>29.</td>
<td>13.</td>
<td>13.</td>
<td>0.07</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP14</td>
<td>284.</td>
<td>6.10</td>
<td>38.</td>
<td>17.</td>
<td>17.</td>
<td>0.12</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP14</td>
<td>284.</td>
<td>6.10</td>
<td>38.</td>
<td>17.</td>
<td>17.</td>
<td>0.12</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS3</td>
<td>137.</td>
<td>6.05</td>
<td>15.</td>
<td>6.</td>
<td>6.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFCS3</td>
<td>123.</td>
<td>6.00</td>
<td>15.</td>
<td>6.</td>
<td>6.</td>
<td>0.05</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP15</td>
<td>407.</td>
<td>6.10</td>
<td>53.</td>
<td>23.</td>
<td>23.</td>
<td>0.18</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP15</td>
<td>406.</td>
<td>6.10</td>
<td>53.</td>
<td>23.</td>
<td>23.</td>
<td>0.18</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CS4</td>
<td>188.</td>
<td>6.00</td>
<td>20.</td>
<td>9.</td>
<td>9.</td>
<td>0.05</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFVC</td>
<td>22.</td>
<td>6.35</td>
<td>18.</td>
<td>9.</td>
<td>9.</td>
<td>0.05</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP16</td>
<td>427.</td>
<td>6.10</td>
<td>70.</td>
<td>32.</td>
<td>32.</td>
<td>0.23</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP16</td>
<td>427.</td>
<td>6.10</td>
<td>70.</td>
<td>32.</td>
<td>32.</td>
<td>0.23</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN1</td>
<td>275.</td>
<td>6.10</td>
<td>30.</td>
<td>13.</td>
<td>13.</td>
<td>0.14</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFSA</td>
<td>9.</td>
<td>8.20</td>
<td>9.</td>
<td>6.</td>
<td>6.</td>
<td>0.14</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFSA</td>
<td>9.</td>
<td>8.30</td>
<td>9.</td>
<td>6.</td>
<td>6.</td>
<td>0.14</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN2</td>
<td>136.</td>
<td>6.10</td>
<td>15.</td>
<td>7.</td>
<td>7.</td>
<td>0.08</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP17</td>
<td>142.</td>
<td>6.10</td>
<td>24.</td>
<td>13.</td>
<td>13.</td>
<td>0.22</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP17</td>
<td>140.</td>
<td>6.10</td>
<td>24.</td>
<td>13.</td>
<td>13.</td>
<td>0.22</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-CN3</td>
<td>98.</td>
<td>6.05</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.04</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP18</td>
<td>232.</td>
<td>6.10</td>
<td>34.</td>
<td>17.</td>
<td>17.</td>
<td>0.27</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP18</td>
<td>232.</td>
<td>6.10</td>
<td>34.</td>
<td>17.</td>
<td>17.</td>
<td>0.27</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP19</td>
<td>1707.</td>
<td>6.15</td>
<td>429.</td>
<td>195.</td>
<td>195.</td>
<td>3.55</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP19</td>
<td>1687.</td>
<td>6.15</td>
<td>428.</td>
<td>195.</td>
<td>195.</td>
<td>3.55</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM5</td>
<td>265.</td>
<td>6.10</td>
<td>28.</td>
<td>13.</td>
<td>13.</td>
<td>0.18</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP20</td>
<td>1925.</td>
<td>6.15</td>
<td>457.</td>
<td>208.</td>
<td>208.</td>
<td>3.73</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM6</td>
<td>319.</td>
<td>6.00</td>
<td>36.</td>
<td>16.</td>
<td>16.</td>
<td>0.09</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP21</td>
<td>2084.</td>
<td>6.10</td>
<td>491.</td>
<td>223.</td>
<td>223.</td>
<td>3.82</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-PM7</td>
<td>191.</td>
<td>6.20</td>
<td>28.</td>
<td>12.</td>
<td>12.</td>
<td>0.14</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F1</td>
<td>233.</td>
<td>6.10</td>
<td>26.</td>
<td>11.</td>
<td>11.</td>
<td>0.12</td>
</tr>
<tr>
<td>DIVERSION TO</td>
<td>F1S</td>
<td>110.</td>
<td>5.90</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.12</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>F1P</td>
<td>123.</td>
<td>5.90</td>
<td>21.</td>
<td>10.</td>
<td>10.</td>
<td>0.12</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-F1P</td>
<td>123.</td>
<td>6.00</td>
<td>21.</td>
<td>10.</td>
<td>10.</td>
<td>0.12</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F2</td>
<td>69.</td>
<td>6.05</td>
<td>7.</td>
<td>3.</td>
<td>3.</td>
<td>0.04</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F1S</td>
<td>110.</td>
<td>6.10</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.00</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-F1S</td>
<td>109.</td>
<td>6.15</td>
<td>5.</td>
<td>2.</td>
<td>2.</td>
<td>0.00</td>
</tr>
<tr>
<td>3 COMBINED AT</td>
<td>AP-DFSF</td>
<td>296.</td>
<td>6.10</td>
<td>33.</td>
<td>15.</td>
<td>15.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RR-DFSF</td>
<td>130.</td>
<td>6.35</td>
<td>121.</td>
<td>121.</td>
<td>121.</td>
<td>0.16</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-DFSF</td>
<td>130.</td>
<td>6.35</td>
<td>121.</td>
<td>121.</td>
<td>121.</td>
<td>0.16</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>SB-F3</td>
<td>210.</td>
<td>6.10</td>
<td>24.</td>
<td>10.</td>
<td>10.</td>
<td>0.11</td>
</tr>
<tr>
<td>2 COMBINED AT</td>
<td>AP22</td>
<td>337.</td>
<td>6.10</td>
<td>145.</td>
<td>131.</td>
<td>131.</td>
<td>0.27</td>
</tr>
<tr>
<td>DIVERSION TO</td>
<td>AP22S</td>
<td>77.</td>
<td>5.95</td>
<td>3.</td>
<td>1.</td>
<td>1.</td>
<td>0.27</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>AP22P</td>
<td>260.</td>
<td>5.95</td>
<td>142.</td>
<td>130.</td>
<td>130.</td>
<td>0.27</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>RT-AP22P</td>
<td>260.</td>
<td>6.00</td>
<td>142.</td>
<td>130.</td>
<td>130.</td>
<td>0.27</td>
</tr>
<tr>
<td>Hydrograph</td>
<td>SB-F6</td>
<td>89.</td>
<td>6.05</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.04</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DF4</td>
<td>71.</td>
<td>5.95</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.04 102.08</td>
</tr>
<tr>
<td>2 Combined</td>
<td>AP23</td>
<td>331.</td>
<td>6.00</td>
<td>152.</td>
<td>134.</td>
<td>134.</td>
<td>0.31</td>
</tr>
<tr>
<td>Diversion To</td>
<td>AP23S</td>
<td>33.</td>
<td>5.95</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.31</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>AP23P</td>
<td>298.</td>
<td>5.95</td>
<td>150.</td>
<td>133.</td>
<td>133.</td>
<td>0.31</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP23P</td>
<td>298.</td>
<td>6.00</td>
<td>150.</td>
<td>133.</td>
<td>133.</td>
<td>0.31</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>AP23S</td>
<td>33.</td>
<td>6.00</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.00</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP23S</td>
<td>36.</td>
<td>6.05</td>
<td>2.</td>
<td>1.</td>
<td>1.</td>
<td>0.00</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-F5</td>
<td>225.</td>
<td>6.00</td>
<td>25.</td>
<td>11.</td>
<td>11.</td>
<td>0.06</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DF5</td>
<td>175.</td>
<td>5.75</td>
<td>25.</td>
<td>11.</td>
<td>11.</td>
<td>0.06 102.32</td>
</tr>
<tr>
<td>3 Combined</td>
<td>AP24</td>
<td>509.</td>
<td>6.05</td>
<td>177.</td>
<td>145.</td>
<td>145.</td>
<td>0.37</td>
</tr>
<tr>
<td>Diversion To</td>
<td>AP24S</td>
<td>159.</td>
<td>5.80</td>
<td>10.</td>
<td>4.</td>
<td>4.</td>
<td>0.37</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>AP24P</td>
<td>350.</td>
<td>5.80</td>
<td>167.</td>
<td>141.</td>
<td>141.</td>
<td>0.37</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP24P</td>
<td>350.</td>
<td>5.85</td>
<td>167.</td>
<td>141.</td>
<td>141.</td>
<td>0.37</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-F6</td>
<td>138.</td>
<td>6.00</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.04</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DF6</td>
<td>104.</td>
<td>5.70</td>
<td>16.</td>
<td>7.</td>
<td>7.</td>
<td>0.04 102.27</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-F7</td>
<td>173.</td>
<td>6.00</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.05</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DF7</td>
<td>132.</td>
<td>5.80</td>
<td>19.</td>
<td>8.</td>
<td>8.</td>
<td>0.05 102.24</td>
</tr>
<tr>
<td>3 Combined</td>
<td>AP25</td>
<td>586.</td>
<td>5.85</td>
<td>201.</td>
<td>156.</td>
<td>156.</td>
<td>0.46</td>
</tr>
<tr>
<td>Diversion To</td>
<td>AP25S</td>
<td>125.</td>
<td>5.70</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.46</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>AP25P</td>
<td>461.</td>
<td>5.70</td>
<td>189.</td>
<td>151.</td>
<td>151.</td>
<td>0.46</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP25P</td>
<td>461.</td>
<td>5.75</td>
<td>189.</td>
<td>151.</td>
<td>151.</td>
<td>0.46</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PM9</td>
<td>51.</td>
<td>6.00</td>
<td>6.</td>
<td>3.</td>
<td>3.</td>
<td>0.01</td>
</tr>
<tr>
<td>4 Combined</td>
<td>AP-DF1</td>
<td>2744.</td>
<td>6.10</td>
<td>713.</td>
<td>389.</td>
<td>389.</td>
<td>4.43</td>
</tr>
<tr>
<td>Routed To</td>
<td>RR-DF1</td>
<td>1130.</td>
<td>6.65</td>
<td>669.</td>
<td>387.</td>
<td>387.</td>
<td>4.43 72.91</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>AP25S</td>
<td>125.</td>
<td>5.85</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.00</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP25S</td>
<td>126.</td>
<td>5.85</td>
<td>11.</td>
<td>5.</td>
<td>5.</td>
<td>0.00</td>
</tr>
<tr>
<td>2 Combined</td>
<td>AP26</td>
<td>1130.</td>
<td>6.65</td>
<td>680.</td>
<td>391.</td>
<td>391.</td>
<td>4.43</td>
</tr>
<tr>
<td>Routed To</td>
<td>RT-AP26</td>
<td>1129.</td>
<td>6.70</td>
<td>679.</td>
<td>390.</td>
<td>390.</td>
<td>4.43</td>
</tr>
<tr>
<td>Hydrograph At</td>
<td>SB-PM9</td>
<td>230.</td>
<td>6.00</td>
<td>24.</td>
<td>11.</td>
<td>11.</td>
<td>0.07</td>
</tr>
<tr>
<td>Description</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>2 COMBINED AT AP27</td>
<td>1143</td>
<td>6.70</td>
<td>400</td>
<td>400</td>
<td>4.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-PM10</td>
<td>175</td>
<td>6.00</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RRDPM10</td>
<td>140</td>
<td>5.80</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
<td>106.31</td>
</tr>
<tr>
<td>ROUTED TO RT-PM10</td>
<td>140</td>
<td>5.85</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT SB-PM11</td>
<td>149</td>
<td>6.00</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>HYDROGRAPH AT AP24S</td>
<td>159</td>
<td>6.05</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>ROUTED TO RT-AP24S</td>
<td>158</td>
<td>6.10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>4 COMBINED AT AP28</td>
<td>1195</td>
<td>6.05</td>
<td>743</td>
<td>421</td>
<td>421</td>
<td>4.59</td>
<td></td>
</tr>
<tr>
<td>STAG</td>
<td>ELEMENT</td>
<td>DT (MIN)</td>
<td>PEAK (CFS)</td>
<td>TIME TO PEAK (IN)</td>
<td>VOLUME (MIN)</td>
<td>DT (CFS)</td>
<td>PEAK (MIN)</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>RT-1P1</td>
<td>MANE</td>
<td>1.95</td>
<td>115.61</td>
<td>386.10</td>
<td>1.16</td>
<td>3.00</td>
<td>114.96</td>
</tr>
</tbody>
</table>

Continuity Summary (AC-Ft) - Inflow=0.1024E+02 Excess=0.0000E+00 Outflow=0.1013E+02 Basin Storage=0.2085E+00 Percent Error= -0.9

RT-API2 | MANE | 2.40 | 245.68 | 386.40 | 1.10 | 3.00 | 243.08 | 387.00 | 1.10 |

Continuity Summary (AC-Ft) - Inflow=0.2316E+02 Excess=0.0000E+00 Outflow=0.2304E+02 Basin Storage=0.1933E+00 Percent Error= -0.3

RT-API3 | MANE | 2.85 | 336.37 | 387.60 | 1.10 | 3.00 | 334.59 | 387.00 | 1.10 |

Continuity Summary (AC-Ft) - Inflow=0.3051E+02 Excess=0.0000E+00 Outflow=0.3039E+02 Basin Storage=0.1711E+00 Percent Error= -0.2

RT-API4 | MANE | 2.72 | 351.91 | 388.34 | 1.13 | 3.00 | 351.21 | 390.00 | 1.13 |

Continuity Summary (AC-Ft) - Inflow=0.3857E+02 Excess=0.0000E+00 Outflow=0.3840E+02 Basin Storage=0.2374E+00 Percent Error= -0.2

RT-DFE | MANE | 1.17 | 267.34 | 409.24 | 1.32 | 3.00 | 267.29 | 411.00 | 1.32 |

Continuity Summary (AC-Ft) - Inflow=0.6896E+02 Excess=0.0000E+00 Outflow=0.6897E+02 Basin Storage=0.4479E-02 Percent Error= 0.0

RT-IPN14 | MANE | 1.05 | 49.82 | 363.76 | 1.91 | 3.00 | 49.19 | 363.00 | 1.91 |

Continuity Summary (AC-Ft) - Inflow=0.2750E+01 Excess=0.0000E+00 Outflow=0.2748E+01 Basin Storage=0.2765E-02 Percent Error= 0.0

RT-AP5 | MANE | 0.25 | 340.20 | 369.03 | 1.36 | 3.00 | 340.18 | 369.00 | 1.36 |

Continuity Summary (AC-Ft) - Inflow=0.7874E+02 Excess=0.0000E+00 Outflow=0.7874E+02 Basin Storage=0.4206E-03 Percent Error= 0.0

RT-IPS1 | MANE | 2.10 | 93.23 | 384.30 | 1.12 | 3.00 | 92.92 | 384.00 | 1.12 |
<table>
<thead>
<tr>
<th>Station</th>
<th>Inflow</th>
<th>Excess</th>
<th>Outflow</th>
<th>Basin Storage</th>
<th>Percent Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-IPS3</td>
<td>1.65</td>
<td>86.86</td>
<td>379.50</td>
<td>1.06</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API4</td>
<td>2.25</td>
<td>193.74</td>
<td>384.75</td>
<td>1.05</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API5</td>
<td>2.55</td>
<td>265.64</td>
<td>390.15</td>
<td>1.06</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API6</td>
<td>1.95</td>
<td>87.01</td>
<td>390.00</td>
<td>1.05</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API7</td>
<td>2.25</td>
<td>184.05</td>
<td>387.00</td>
<td>1.08</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-DP18</td>
<td>2.10</td>
<td>281.01</td>
<td>373.80</td>
<td>1.18</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API9</td>
<td>2.10</td>
<td>424.11</td>
<td>373.80</td>
<td>0.59</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-DPB</td>
<td>0.71</td>
<td>265.64</td>
<td>403.28</td>
<td>0.75</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API11</td>
<td>0.42</td>
<td>277.73</td>
<td>396.35</td>
<td>0.80</td>
<td>3.00</td>
</tr>
<tr>
<td>RT-API5A</td>
<td>1.50</td>
<td>615.55</td>
<td>370.50</td>
<td>1.03</td>
<td>3.00</td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.1463E+03 EXCESS=0.0000E+00 OUTFLOW=0.1462E+03 BASIN STORAGE=0.1841E+00 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-PM1 MANE</td>
<td>0.50 107.12 366.09 2.24 3.00 107.08 366.00 2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.6448E+01 EXCESS=0.0000E+00 OUTFLOW=0.6446E+01 BASIN STORAGE=0.7579E-02 PERCENT ERROR= -6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP12 MANE</td>
<td>1.35 938.54 371.25 1.08 3.00 937.69 372.00 1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.1700E+03 EXCESS=0.0000E+00 OUTFLOW=0.1698E+03 BASIN STORAGE=0.2695E+00 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-CS1 MANE</td>
<td>1.65 90.51 366.30 1.85 3.00 90.31 366.00 1.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.5244E+01 EXCESS=0.0000E+00 OUTFLOW=0.5233E+01 BASIN STORAGE=0.2491E-01 PERCENT ERROR= -0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP14 MANE</td>
<td>0.50 284.03 366.35 3.18 3.00 283.67 366.00 3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.2089E+02 EXCESS=0.0000E+00 OUTFLOW=0.2089E+02 BASIN STORAGE=0.2081E-01 PERCENT ERROR= -0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP15 MANE</td>
<td>0.45 406.34 366.25 3.08 3.00 405.99 366.00 3.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.2891E+02 EXCESS=0.0000E+00 OUTFLOW=0.2890E+02 BASIN STORAGE=0.2341E-01 PERCENT ERROR= -0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP16 MANE</td>
<td>0.11 427.19 366.16 3.25 3.00 427.05 366.00 3.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.3973E+02 EXCESS=0.0000E+00 OUTFLOW=0.3973E+02 BASIN STORAGE=0.7924E-02 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-DFA MANE</td>
<td>1.11 8.98 499.60 1.00 3.00 8.98 498.00 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.7739E+01 EXCESS=0.0000E+00 OUTFLOW=0.7729E+01 BASIN STORAGE=0.9996E-02 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP17 MANE</td>
<td>0.82 141.10 367.03 1.35 3.00 140.17 366.00 1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.1605E+02 EXCESS=0.0000E+00 OUTFLOW=0.1603E+02 BASIN STORAGE=0.1607E-01 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP18 MANE</td>
<td>0.35 231.68 365.86 1.51 3.00 231.64 366.00 1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTINUITY SUMMARY (AC-FT)</td>
<td>INFLOW=0.2146E+02 EXCESS=0.0000E+00 OUTFLOW=0.2145E+02 BASIN STORAGE=0.8548E-02 PERCENT ERROR= 0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT-AP19 MANE</td>
<td>1.99 1701.81 370.56 1.27 3.00 1686.60 369.00 1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin Name</td>
<td>RT-F1P</td>
<td>RT-F1S</td>
<td>RT-DFS</td>
<td>RT-AP22P</td>
<td>RT-AP23P</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td>0.75</td>
<td>0.62</td>
<td>1.35</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>123.10</td>
<td>108.57</td>
<td>129.92</td>
<td>260.35</td>
<td>298.61</td>
</tr>
<tr>
<td></td>
<td>355.43</td>
<td>369.00</td>
<td>382.04</td>
<td>359.10</td>
<td>358.10</td>
</tr>
<tr>
<td></td>
<td>1.86</td>
<td>-1.00</td>
<td>17.66</td>
<td>11.05</td>
<td>9.96</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>123.01</td>
<td>108.57</td>
<td>129.91</td>
<td>260.20</td>
<td>298.01</td>
</tr>
<tr>
<td></td>
<td>360.00</td>
<td>369.00</td>
<td>381.00</td>
<td>360.00</td>
<td>360.00</td>
</tr>
<tr>
<td></td>
<td>1.86</td>
<td>-1.00</td>
<td>17.67</td>
<td>11.06</td>
<td>9.96</td>
</tr>
</tbody>
</table>
CONTINUITY SUMMARY (AC-FT) - INFLOW=0.1063E+02 EXCESS=0.0000E+00 OUTFLOW=0.1063E+02 BASIN STORAGE=0.4832E-02 PERCENT ERROR= 0.0

| RT-AP24S | MANE | 0.90 | 158.95 | 365.40 | -1.00 | 3.00 | 158.39 | 366.00 | -1.00 |

*** NORMAL END OF HEC-1 ***
MAPS (FOLDED IN POCKETS)

- FULLY DEVELOPED CONDITION BASIN MAP AND MASTER PLAN
- INTERIM CONDITION BASIN MAP AND MASTER PLAN
- F.E.M.A. 100-YEAR FLOOD ZONE LIMITS
- SUBDIVISION AND LAND USE IDENTIFICATION MAP
- EXISTING DRAINAGE FACILITY MAP